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Chapter 1

Introduction

1.1 Abstract

The project dealt with two classes of core decision-making algorithms related to operator-
UV collaboration; the first class involves the routing of UVs through the set of targets
nominated by the operator and the second class of problems involves decision-making
algorithms for UVs to accommodate uncertainty. We have developed approximation,
lower bounding and exact algorithms to address the two classes of problems. We have
also implemented these algorithms in simulations to corroborate the performance of these
algorithms. In the ensuing discussion, we will summarize our work for the project, and
our main results.

1.2 Routing of UVs

1.2.1 Problem Statement:

In the COUNTER project of AFRL, a collection of UVs were required to gather informa-
tion about a set of potential targets and transmit them to an operator, who may request
a revisit of the potential targets from a different perspective. The operator specifies the
location of the potential targets through a human-machine interface (Vigilant Spirit Sta-
tion) just before the mission begins. The role of the operator is more of a classifier/sensor
and of a supervisor in the loop and the task of motion planning is automated. The central
computer associated with the Vigilant Spirit Station has a few minutes to compute the
trajectories before each mission, including specifying the set of targets to be visited and
the order in which they must be visited by each UV and provide them with waypoints.

The basic task allocation/routing problem that arises in this scenario is as follows:
Given a set S of potential targets to be visited by a group of m heterogeneous UVs, what
is a time optimal (or distance optimal) motion schedule for each of the UVs? There may
also be other constraints of timing and precedence that must be obeyed in routing the
vehicles.

We have focused on three main issues that complicate the routing problem. The first
issue arises due to the heterogeneity among vehicles. Heterogeneity can arise due to UVs
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having different motion constraints or due to UVs carrying different suites of sensors.
Heterogeneity leads to a number of fundamental routing problems, which have not yet
been addressed in the literature but have a wide applicability to defense. The second
complicating issue deals with determining the approach angle at each target and the
sequence of targets for each vehicle to visit simultaneously. This problem can be posed
as a non-linear program and prior to our work, there were no exact or lower bounding
algorithms for solving the same. The third complicating issue deals with a constraint on
the length of the path traveled by the vehicle before refueling. Small UVs, in particular,
have constraints on the amount of fuel it can carry. Surveillance missions with small UVs
typically require the vehicles to frequently revisit the depots for refueling.

We focused on three types of algorithms for addressing the routing problems in the
project:

• Approximation Algorithms: Algorithms that guarantee producing feasible solutions
with the bound on the running time to be a polynomial function of the size of the
problem and a bound on sub-optimality. Approximation algorithms provide a priori
guarantee on the quality of the solution (which can be inferred from the bound on
sup-optimality) even before the solution is computed and tends to be conservative.
Approximation algorithms provide a feasible solution, which can serve as a start-
ing point for refinement heuristics. Development of an approximation algorithm
requires paying attention to the problem formulation, which in turn helped us in
obtaining better a posteriori bounds.

• Transformation methods: The basic idea of a transformation method is to convert
the given routing problem to the canonical routing problem, the TSP. By doing
so, one can utilize the existing algorithms for the TSP to solve the given routing
problem. The basic idea of transformation is as follows: Suppose there are m
vehicles, each of which must be driven by an operator. The problem of finding a
schedule for the UVs can now be seen as a problem of determining the schedule for
the operator, which is a TSP.

• Bounds using Linear Programming (LP) Relaxation and heuristics: We focused
on lower bounds, because one can then estimate the quality of a feasible solution
a posteriori. Since the routing problem has a partitioning problem embedded in
it, we used LP relaxations of the mixed-integer LP to construct a partitioning
scheme. Subsequently, we used the Lin-Kernighan-Helsgaun (LKH) heuristic to
obtain schedules for each UV.

1.2.2 Summary of our work on Heterogeneity:

We have developed the following approximation algorithms for variants of the hetero-
geneous routing problems. The basic idea here is to solve a tight Linear Programming
(LP) relaxation of the problem and assign each target to a vehicle by rounding some of
the fractional variables. Once the targets are partitioned, the standard approximation
algorithms for a single TSP are used to obtain a tour for each vehicle.
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• 1.5m-approximation ratio for a Multiple Depot, Heterogeneous TSP where m is the
number of vehicles (We discuss this work in Chapter 2).

• 4m-approximation ratio for a Multiple Depot, Heterogeneous HPP.

• 5m/3-approximation ratio for a Multiple Depot, Multiple Terminal, Heterogeneous
HPP.

For the special case where each UV is modeled as a ground robot that can travel
forwards and backwards with a constraint on its minimum turning radius, we have de-
veloped a 2-approximation algorithm using the Primal-Dual method.

Transformation Methods: The idea of the transformation method is to duplicate the
depots and identify them as two locations - one where the vehicle starts from and the
other to which the vehicle returns (terminal). Then, one may convert the problem of
planning the motion of vehicles to the scheduling of the operator for the vehicles so that
the total cost is minimized by setting the cost of the operator switching from a terminal
to a depot is zero. There are other modifications to the graph one must make so that the
optimal solution to the TSP provides an optimal schedule for the vehicles. More details
of this scheme may be found in our publications.

1.2.3 Summary of our work on dealing with motion constraints:

We have developed a lower bounding algorithm for the problem of simultaneously de-
termining the approach angle at the targets and the tours for the UVs. A tighter lower
bound helps in quickly and accurately estimating the quality of solutions supplied by
heuristics and in the development of exact algorithms for finding optimal motion plans
through Branch and Bound procedures. The best known lower bound that is currently
available for the motion-constrained routing problem relaxes all motion constraints. We
obtain a lower bound by relaxing the constraints corresponding to the angle of approach
at each of the targets and then penalizing them whenever they are violated. The solution
to the Lagrangian relaxation gives a lower bound, and this lower bound is maximized
over the penalty variables using subgradient optimization. Simulation results for a single
vehicle problem with 50 targets show that our method improved the previously known
lower bounds by almost 15%.

1.2.4 Summary of our work on dealing with fuel constraints:

The basic problem here is as follows: Given a collection of assigned targets, a collection
of UVs with limited fuel capacity and a set of depots where they can refuel, what is
an optimal motion plan for the collection so that the fuel/storage capacity constraints
of every UV is not violated at any point during its motion and the total fuel/distance
spent is a minimum. A variant of this problem arises in an application supplied by AFRL
Dayton where the UVs pick up images and need to drop them off at dropoff nodes that
are hardwired to a remote location. The objective here is to route the UVs so that the
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latency in delivering information to the dropoff nodes is within an acceptable value while
the total fuel consumed is minimized.

Fuel capacity of a UV may be parameterized by the non-dimensional factor, a, which
denotes the maximum fraction of fuel capacity expended while visiting a target from any
other target. This factor must necessarily be less than 1/2; otherwise, a UV may run
out of fuel before returning to a depot. We have developed a two-approximation (primal-
dual) algorithm for a heterogeneous collection of UVs with no fuel capacity constraints
and a 2(1 + 2a)/(1 − 2a) approximation algorithm for UVs with capacity constraints.
Also, for the asymmetric case, we have developed an algorithm with an approximation
ratio of (1 + a + 2aβ)log(n)/(1− 2a) where n represents the number of targets and a, β
are data dependent constants (We discuss this work in Chapter 3). In addition to
the theoretical guarantees, the following are the contributions of our work:

1. We have developed two mixed-integer linear programs for the routing problem based
on the single and multi-commodity flow formulations available for standard network
synthesis problems in the literature. These formulations are mainly used to find
the optimal solutions for the routing problem, and for corroborating the quality of
the solutions produced by the heuristics.

2. Fast construction and improvement heuristics were developed to find good feasible
solutions for the routing problem. Even though the mixed integer, linear program-
ming formulations can be used to find optimal solutions, it may be time consuming
to solve them. In addition, practical scenarios may only provide approximate input
data about the locations of the targets, and as a result, it may be useful to find
good, approximate solutions than find optimal solutions that are more difficult to
solve. For this reason, we have developed several improvement heuristics for the
routing problem with fuel constraints.

3. We have implemented the proposed algorithms and the computational results show
that solutions whose costs are, on an average, within 1.5% of the optimum can be
obtained relatively fast for a single vehicle problem involving 25 targets.

1.3 Stochastic Dynamic Programming

Problem Statement: We focused on the development and analysis of sub-optimal decision
algorithms for a collection of robots that assist a remotely located operator in perimeter
surveillance. The operator is tasked with the classification of an incursion across the
perimeter. Whenever there is an incursion into the perimeter, an Unattended Ground
Sensor (UGS) in the vicinity, signals an alert. A robot services the alert by visiting the
alert location, collecting evidence in the form of video and other imagery, and transmitting
them to the operator.

The accuracy of operator’s classification depends on the volume and freshness of
information gathered and provided by the robots at locations where incursions occur.
There are two competing needs for a robot: it needs to spend adequate time at an alert
location to collect evidence for aiding the operator in accurate classification but it also
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needs to service the alert as soon as possible, so that the evidence collected is relevant.
The control problem is to determine the optimal amount of time a robot must spend
servicing an alert. The incursions are stochastic and their statistics is known a priori.

1.3.1 Summary of results:

This problem may be posed as a Markov Decision Problem (MDP). However, even for
two robots and five UGS locations, the number of states is of the order of millions. We
adopted Approximate Dynamic Programming (ADP) via Linear Programming (LP) as
it provides a way to approximate the value function and provide bounds on its sub-
optimality. The novel feature of this work is to present a lower bound via LP based
techniques and state partitioning and construct a sub-optimal policy whose performance
exceeds the lower bound.

Specifically, we obtained the following results:

1. We developed upper and lower bounds to the value function as component-wise
minimum vector of all feasible solutions to Generalized Bellman inequalities (GBIs).
These inequalities require the specification of disjoint sets of the state space and
the bounds take a constant value for all the states in specified disjoint sets. The
bounds help establish sub-optimality bounds for any feasible stationary policy for
the MDP. We discuss this work in Chapter 4.

2. We developed a sub-optimal policy, which is greedy with respect to the constructed
lower bound and show that its performance is no less than the lower bound.

3. We exploit the structure of the perimeter surveillance problem and simplify the
computation of the upper and lower bounds to the determination of optimal solution
of a linear program or a sequence of linear programs in fewer variables.

4. We constructed a sub-optimal policy, which was implemented by AFRL researchers
at Vandenberghe AFB.

Acknowledgment/Disclaimer: This work was sponsored (in part) by the Air Force
Office of Scientific Research under grant/contract number FA09550-10-1-0932. The views
and conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied,
of the Air Force Office of Scientific Research or the US government.
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Chapter 2

Approximation Algorithm for a
Multiple, Heterogeneous Traveling
Salesman Problem

2.1 Introduction

Surveillance applications involving Unmanned Aerial Vehicles (UAVs) or ground robots
require multiple vehicles with different capabilities to visit a set of destinations. This
chapter addresses an important routing problem that arises in these applications involving
two heterogenous vehicles. Specifically, the routing problem we address is a 2-depot,
Heterogenous Traveling Salesman Problem (2-HTSP) which is stated as follows: Given a
set of destinations and two heterogeneous vehicles that start from distinct depots, find a
tour for each vehicle such that each destination is visited exactly once and the total cost
of the tours of the vehicles is a minimum.

In this chapter, we consider two types of heterogeneity for both the vehicles, i.e.,
structural heterogeneity and functional heterogeneity. If the vehicles are structurally dif-
ferent, the cost of traveling between two destinations not only depends on the position of
the destinations but also on the vehicle. In the case of functional heterogeneity, the vehi-
cles are identical structurally but there may be additional vehicle-destination constraints
that must be met. In this case, the destinations may be partitioned into three disjoint
subsets: a subset of destinations the first vehicle must visit, a subset of destinations the
second vehicle must visit and a set of common destinations that either of the two vehicles
can visit. Although the cost of traveling from one destination to another is the same
for both the vehicles, these restrictions on the vehicle-destination assignment introduce
heterogeneity.

There are several applications where routing problems such as the 2-HTSP could arise.
In UAV applications, it is possible that the vehicles have different constraints on their
maximum speeds depending on the vehicle type. Even if we ignore the constraints on the
turning radius of the vehicles when the destinations are reasonably far apart, the cost of
traveling between any two destinations is still dependent on the type of the vehicle. Also,
the UAVs can carry different sensors, and therefore, there may be additional constraints
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that require a subset of destinations must be visited by a specific UAV.
The 2-HTSP is a generalization of the single Traveling Salesman Problem and is NP-

Hard (1). Therefore, we are interested in developing approximation algorithms for the
2-HTSP. An α−approximation algorithm (1) is an algorithm that

• has a polynomial-time running time, and

• returns a solution whose cost is within α times the optimal cost for any instance of
the problem.

We will assume that the cost of traveling from an origin to a destination directly for
each vehicle is no more expensive than the cost of traveling from the same origin to the
destination through an intermediate location. We say that the costs satisfy the triangle
inequality if they satisfy the above property. It is currently known that there cannot
exist a constant factor approximation algorithm for a single Traveling Salesman Problem
in general if the triangle inequality is not satisfied unless P = NP . In this chapter, we
present a 3-approximation algorithm for the 2-HTSP when the costs associated with each
vehicle satisfy the triangle inequality.

2.2 Literature Review

The 2-HTSP is related to a well known class of problems that has received significant at-
tention in the area of combinatorial optimization. These problems include the Traveling
Salesman Problem (TSP), the Hamiltonian Path Problem (HPP) and their generaliza-
tions. As this work deals with constant factor approximation algorithms, henceforth, we
assume that, for every vehicle the costs satisfy the triangle inequality. The symmetric TSP
has two well known approximation algorithms - the 2−approximation algorithm obtained
by doubling the minimum spanning tree (MST) and the 1.5−approximation algorithm
of Christofides obtained through the construction of MST and a weighted non-bipartite
matching of nodes of MST with odd degree (2).

There are 2−approximation algorithms for variants of the homogenous, multiple TSP
and HPP in (3),(4). Prior to our work, there were no approximation algorithms for a
general heterogenous, multiple TSP in the literature. In this work, we present the first
3-approximation algorithm for the 2-HTSP when the costs satisfy the triangle inequality.

Contributions of our work: We formulate the 2-HTSP as an integer program with
assignment, degree and connectivity constraints on a multi-graph. Given any two desti-
nations, we construct this multi-graph by adding an edge joining the two destinations for
each vehicle. The cost assigned to an edge would then be equal to the distance required
by the corresponding vehicle to travel that edge. We use a set of binary decision variables
to formulate the assignment constraints between the vehicles and the destinations. As
each destination must be visited exactly once, we also have a degree constraint on each
destination vertex. If a destination is assigned to a vehicle, the connectivity constraints
require that there must be at least two edge-disjoint paths between the destination and
the depot corresponding to the vehicle. Using Menger’s theorem(1), this connectivity
requirement can then be formulated as a cut constraint. To formulate these cut and the
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degree constraints, we use binary decision variables to decide whether an edge must be
chosen or not.

The basic idea for the approximation algorithm is as follows: We first relax all the
binary decision variables and solve the resulting linear program to find the subset of des-
tinations each vehicle must visit. Once the partitioning problem is solved, Christofides
algorithm (2) is used on the partitions to get a tour for each vehicle. Even though the
number of cut constraints in this linear program grow exponentially with the number
of destinations, the relaxed linear program can be shown to be solvable in polynomial
time using the Ellipsoid method(5). Using the result that the cost of the feasible solution
produced by the Christofides algorithm is at most 3

2
times the cost of the Held-Karp relax-

ation of the single TSP (6) and the parsimonious property of the Held-Karp relaxation(7),
one can show that the proposed algorithm has an approximation ratio of 3. A key part
of our approximation algorithm is in the way we formulate the 2-HTSP and relax the
constraints. We present this formulation in the next section.

2.3 Problem Formulation

Let T = {1, . . . , n} be the set of vertices that denote all the destinations and V = {d1, d2}
be the set of vertices that correspond to the initial depots of the vehicles. For each depot
vertex di, we also introduce a copy of the depot vertex called the terminal vertex, d′i, that
exactly coincides with the location of the depot vertex. Each vehicle after visiting its
share of destinations will visit its corresponding terminal before returning to its depot.
Our integer programming formulation includes a terminal vertex for each vehicle in order
to allow for each vehicle to visit exactly one destination if needed (this will be further
discussed in the remarks later in this section).

Let Vi = {di, d′i}
⋃
T denote the set of all the vertices corresponding to the ith vehicle.

Let Ei stand for the set of all the edges joining any two vertices in Vi. For any S ⊂ Vi,
let δi(S) denote the set of all the edges e ∈ Ei that has one end point in S and one end
point in Vi \ S. Each edge e ∈ Ei has a cost Ci

e ∈ Q+ associated with it where Q+ is
the set of all positive rational numbers. Assume that all the costs satisfy the triangle
inequality. Let R1 and R2 be the set of vertices that must be visited by the first and the
second vehicle respectively. Note that R1

⋂
R2 = ∅ and each destination in T \ (R1

⋃
R2)

can be visited by either the first or the second vehicle.

Let xe (ye) denote the binary variable that decide whether edge e is present in the
routes of the first (second) vehicle. An edge e is present in the tour of the first vehicle
if xe = 1 and is not present otherwise. ye is defined similarly. Let φi denote the binary
decision variable that is equal to 1 if destination i is visited by the first vehicle and is
equal to 0 otherwise. Similarly, let ηi denote the binary decision variable that is equal
to 1 if destination i is visited by the second vehicle and is equal to 0 otherwise. The
following is the integer programming formulation of the 2-HTSP:
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Copt = min
x,y,φ,η

∑
e∈E1

xeC
1
e +

∑
e∈E2

yeC
2
e (2.1)

φi = 1, for all i ∈ R1, (2.2)

ηi = 1, for all i ∈ R2, (2.3)

φi + ηi = 1, for all i ∈ T \ (R1

⋃
R2), (2.4)

∑
e∈δ1({i})

xe = 2φi,∀i ∈ T, (2.5a)

∑
e∈δ1({u})

xe ≥ 2φi, u ∈ {d1, d
′
1},∀i ∈ T,

(2.5b)∑
e∈δ1({u})

xe ≤ 2, u ∈ {d1, d
′
1}, (2.5c)

For all i ∈ T,∑
e∈δ1(S)

xe ≥ 2φi,∀S ⊂ V1, such that

i ∈ S, |S
⋂
{d1, d

′
1}| ≤ 1,

(2.5d)

xe ∈ {0, 1} ∀e ∈ E1, (2.5e)

φi ∈ {0, 1} ∀i ∈ T. (2.5f)

∑
e∈δ2({i})

ye = 2ηi,∀i ∈ T, (2.6a)

∑
e∈δ2({u})

ye ≥ 2ηi, u ∈ {d2, d
′
2},∀i ∈ T,

(2.6b)∑
e∈δ2({u})

ye ≤ 2, u ∈ {d2, d
′
2}, (2.6c)

For all i ∈ T,∑
e∈δ2(S)

ye ≥ 2ηi,∀S ⊂ V2, such that

i ∈ S, |S
⋂
{d2, d

′
2}| ≤ 1,

(2.6d)

ye ∈ {0, 1} ∀e ∈ E2, (2.6e)

ηi ∈ {0, 1} ∀i ∈ T. (2.6f)
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The constraints in equations (2.2) and (2.3) state that the destinations in R1 and R2 must
be respectively visited by the first and the second vehicle. The assignment constraints in
equation (2.4) require that a destination in T \(R1

⋃
R2) can be visited either by the first

vehicle or the second vehicle but not both. The degree constraints in equations (2.5a,
2.6a) together indicate that the number of edges incident on each destination vertex
must be equal to 2. The degree constraints in equations (2.5b,2.6b) specify that the
number of edges incident on a depot/terminal must be at least equal to 2 if the vehicle
corresponding to the depot/terminal is visiting at least one destination. The degree
constraints in equations (2.5c,2.6c) state that the number of edges incident on both the
depots and the terminals can at most be equal to 2. If a destination is visited by a vehicle,
the cut constraints in equations (2.5d, 2.6d) enforce a requirement that there must be at
least two edge disjoint paths from the destination to the depot/terminal corresponding to
the vehicle visiting that destination. These cut constraints in combination with the degree
constraints also eliminate the presence of any cycles among the destination vertices.

Remark 1 The terminal vertices d′1, d
′
2 were added to the problem to essentially allow for

a vehicle to visit exactly one destination if needed. For example, by adding these terminal
vertices, one could allow a tour for the first vehicle to be of the form {d1, u, d

′
1, d1} where

u is a vertex denoting a destination. Then, the first vehicle visits the destination u,
and then the terminal d′1 before returning to its depot. However, adding these terminal
vertices could also result in a solution where the optimal tour for the ith vehicle is of
the form {di, vi1, · · · , vili , d′i, vili+1

, · · · , viki , di} where vij ∈ T for j = 1, · · · , ki. In this
case, the depot and its corresponding terminal vertex are not adjacent vertices in the tour.
However, this is not an issue in this chapter as we assume that all the costs associated
with every vehicle satisfy the triangle inequality. Therefore, one can always shortcut the
edges in the optimal solution to obtain tours so that each vehicle returns to its depot
immediately after visiting its corresponding terminal.

Remark 2 The cut constraints in equations (2.5d,2.6d) can also be written equivalently
as given below. The reason for formulating the constraints as stated in equations (2.5d,2.6d)
is to simplify the proofs of the approximation algorithm discussed in section 2.5.∑

e∈δ1(S)

xe ≥ 2 max
i∈S

φi,∀S ⊂ V1 such that |S
⋂

T | > 0, |S
⋂
{d1, d

′
1}| ≤ 1,

∑
e∈δ2(S)

ye ≥ 2 max
i∈S

ηi,∀S ⊂ V2 such that |S
⋂

T | > 0, |S
⋂
{d2, d

′
2}| ≤ 1.

Remark 3 Using the max-flow min-cut theorem (1), the cut constraints in equations
(2.5d,2.6d) can also be formulated using flow constraints. Therefore, φi and ηi can be
interpreted as the amount of flow shipped from the first and second depot respectively to
the ith destination.

Before we present the approximation algorithm, we state the following Linear Pro-
gramming (LP) relaxation of the 2-HTSP as it plays a crucial role in the development of
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the algorithm.

C∗lp = min
x,y,φ,η

∑
e∈E1

xeC
1
e +

∑
e∈E2

yeC
2
e (2.7)

φi ≥ 1, for all i ∈ R1, (2.8)

ηi ≥ 1, for all i ∈ R2, (2.9)

φi + ηi ≥ 1, for all i ∈ T \ (R1

⋃
R2), (2.10)

∑
e∈δ1({u})

xe ≥ 2φi, u ∈ {d1, d
′
1}, (2.11a)

For all i ∈ T,∑
e∈δ1(S)

xe ≥ 2φi, ∀S ⊂ V1, such that

i ∈ S, |S
⋂
{d1, d

′
1}| ≤ 1,

(2.11b)

0 ≤ xe ≤ 1 ∀e ∈ E1, (2.11c)

φi ≥ 0 ∀i ∈ T. (2.11d)

∑
e∈δ2({u})

ye ≥ 2ηi, u ∈ {d2, d
′
2}, (2.12a)

For all i ∈ T,∑
e∈δ2(S)

ye ≥ 2ηi, ∀S ⊂ V2, such that

i ∈ S, |S
⋂
{d2, d

′
2}| ≤ 1,

(2.12b)

0 ≤ ye ≤ 1 ∀e ∈ E2, (2.12c)

ηi ≥ 0 ∀i ∈ T. (2.12d)

2.4 Approximation Algorithm for the 2-HTSP

The following is the proposed algorithm Approx for the 2-HTSP:

1. Solve the Linear Programming relaxation formulated in equations (2.7-2.12) using
the Ellipsoid method (5). Let an optimal solution to this relaxation be denoted
by (x∗, y∗, φ∗, η∗). We will later show that this relaxation is solvable in polynomial
time.

2. φ∗i (η∗i ) essentially denotes the optimal fraction of the flow shipped to the ith

destination using the first vehicle (second vehicle). Assign each destination to
the vehicle that ships its largest fraction. Break ties arbitrarily. This step of
the algorithm essentially partitions the destinations into two disjoint groups. Let
U1 = {i : i ∈ T, ψi ≥ ηi} correspond to those destinations which are assigned to
the first vehicle, and U2 = T \ U1 be the set of destinations assigned to the second
vehicle.

3. For the ith vehicle, if U i is not empty, apply the Christofides algorithm to find a
tour that visits all the vertices in U i

⋃{di, d′i}.
Clearly, the tours produced by the above algorithm is a feasible solution for the integer

program formulated in equations (2.1-2.6f). The following theorem is the main result of
this work:
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Theorem 2.4.1 Algorithm Approx is a polynomial time algorithm for the 2-HTSP with
an approximation ratio of 3.

2.5 Proof of the 3-approximation ratio of Approx

In the following lemma, we first show that Approx is a polynomial time algorithm.

Lemma 2.5.1 Approx is a polynomial time algorithm.

Proof The main steps in Approx involve solving a linear program defined by equations
(2.7-2.12) and using the Christofides algorithm. If there are n destinations, it is known
that the number of steps required for the Christofides algorithm is of O(n3). Therefore,
step (3) of the algorithm Approx requires O(|U1|3) + O(|U2|3) ≈ O(n3) steps. We now
show that the linear program (2.7-2.12) is solvable in polynomial time using the Ellip-
soid method (5). In (5), Grötschel, Lovász and Schrijver showed that the polynomial
solvability of a linear program is equivalent to the polynomial solvability of the following
separation problem using the Ellipsoid method:

Let P denote the polytope defined by all the constraints of the linear program in
equations (2.8-2.12). Given xe ∀e ∈ E1, ye ∀e ∈ E2, and φi, ηi ∀i ∈ T , decide whether the
given solution is in P and if not, find a violated constraint.

The cut constraints defined by equations (2.11b,2.12b) are the only set of constraints
that grow exponentially with the number of destinations. Therefore, the separation
problem is solvable in polynomial time if a separation algorithm can be developed for
these cut constraints. For each destination i ∈ T , the cut constraints defined in equation
(2.11b) are as follows:∑

e∈δ1(S)

xe ≥ 2φi,∀S ⊂ V1 such that i ∈ S and |S
⋂
{d1, d

′
1}| ≤ 1. (2.13)

Applying max-flow, min-cut theorem, the above cut constraints imply that there must at
least be a flow of 2φi from vertex i to both the depot d1 and the terminal d′1. Therefore,
given a destination vertex i ∈ T , xe ∀e ∈ E1 and φi, one can use the max-flow algorithm to
decide whether the given solution is feasible for the constraints in equation (2.13) or find
a cut that violates these constraints in polynomial time. By repeating this argument for
each of the destination vertices, we can conclude that a polynomial time separation algo-
rithm is available to handle the constraints defined in equation (2.11b). By using similar
arguments, one can also develop a separation algorithm for the constraints in equation
(2.12b). Therefore, there is a polynomial time algorithm for the separation problem.
Hence, the linear program defined in equations (2.11,2.12) is solvable in polynomial time
using the Ellipsoidal method (5).

In the remaining part of this discussion, we will show that the approximation ratio of
Approx is 3. Let the tour produced for the ith vehicle by Approx be denoted by TOURi.
Let the cost of these tours be denoted by C(TOUR1) and C(TOUR2) respectively. For
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a single TSP, Shmoys and Williamson (6) have shown that the cost of the solution pro-
duced by the Christofides algorithm is at most a factor of 3

2
away from the optimal cost

of the Held-Karp relaxation of the single TSP. Using this result, one can deduce that
C(TOUR1) ≤ 3

2
C1
hk where C1

hk denotes the optimal cost of the Held-Karp’s relaxation
for the first vehicle visiting all the vertices in U1

⋃{d1, d
′
1}. Similarly, it follows that

C(TOUR2) ≤ 3
2
C2
hk where C2

hk denotes the optimal cost of the Held-Karp’s relaxation for
the second vehicle visiting all the vertices in U2

⋃{d2, d
′
2}. The relaxation costs C1

hk and
C2
hk are essentially defined as follows:

C1
hk = min

x

∑
e∈E1

xeC
1
e∑

e∈δ1(S)

xe ≥ 2,∀S ⊂ U1

⋃
{d1, d

′
1},∑

e∈δ1({i})

xe = 2,∀i ∈ U1

⋃
{d1, d

′
1},∑

e∈δ1({i})

xe = 0,∀i ∈ U2,

xe ≥ 0 ∀e ∈ E1.

C2
hk = min

y

∑
e∈E2

yeC
2
e∑

e∈δ2(S)

ye ≥ 2,∀S ⊂ U2

⋃
{d2, d

′
2},∑

e∈δ2({i})

ye = 2,∀i ∈ U2

⋃
{d2, d

′
2},∑

e∈δ2({i})

ye = 0,∀i ∈ U1,

ye ≥ 0 ∀e ∈ E2.

As all the costs satisfy the triangle inequality, Goemans and Bertsimas (7) have shown
that the optimal relaxation cost will not change if one were to remove all the degree
constraints in the above Held-Karp relaxation. In (7), Goemans and Bertsimas proved
this property for a more general survivable network design problem. This property is
essentially called the parsimonious property of a network design problem. That is,

C1
hk = min

x

∑
e∈E1

xeC
1
e (2.14)∑

e∈δ1(S)

xe ≥ 2,∀S ⊂ U1

⋃
{d1, d

′
1},

xe ≥ 0 ∀e ∈ E1.

C2
hk = min

y

∑
e∈E2

yeC
2
e (2.15)∑

e∈δ2(S)

ye ≥ 2,∀S ⊂ U2

⋃
{d2, d

′
2},

ye ≥ 0 ∀e ∈ E2.

The sum of the optimal cost of the Held-Karp relaxations, C1
hk + C2

hk, can now be
upper bounded by two times the optimal cost, C∗lp, of the LP relaxation (equations 2.7-
2.12) of the 2-HTSP. To prove this, consider any optimal solution (x∗, y∗, φ∗, η∗) to the
LP in equations (2.7-2.12). One can construct a solution, x̂, for the Held-Karp relaxation
in (2.14) by choosing x̂ = 2x∗. To prove that x̂ is feasible solution for (2.14), note that,
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for any S ⊂ U1

⋃{d1, d
′
1}, |S

⋂{d1, d
′
1}| = 2,∑

e∈δ1(S)

x̂e = 2
∑

e∈δ1(S)

x∗e,

= 2
∑

e∈δ1(V1\S)

x∗e,

≥ 4φ∗i , for all i ∈ V1 \ S, (from constraint 2.11b)

≥ 4φ∗i , for all i ∈ U1 \ S,
≥ 2.

Similarly, for any S ⊂ U1

⋃{d1, d
′
1}, |S

⋂U1| ≥ 1, |S⋂{d1, d
′
1}| ≤ 1,∑

e∈δ1(S)

x̂e = 2
∑

e∈δ1(S)

x∗e,

≥ 4φ∗i , for all i ∈ S
⋂
U1, (from constraint 2.11b)

≥ 2.

Also, for u = d1 or u = d′1,∑
e∈δ1(u)

x̂e = 2
∑

e∈δ1(u)

x∗e,

≥ 4φ∗i , for all i ∈ U1, (from constraint 2.11a)

≥ 2.

Therefore, x̂ is a feasible solution for the Held-Karp relaxation in (2.14). In the same
way, one can also show that ŷ = 2y∗ is also a feasible solution for the Help-Karp relaxation
defined in (2.15). Therefore, C1

hk + C2
hk ≤ 2

∑
e∈E1 x∗eC

1
e + 2

∑
e∈E2 y∗eC

2
e = 2C∗lp. Putting

together all the results, we have

C(TOUR1) + C(TOUR2) ≤ 3

2
(C1

hk + C2
hk),

≤ 3C∗lp,

≤ 3Copt.

2.6 Extension to the related min-max problem

The above approach can also be extended to obtain a 3-approximation algorithm for a 2
depot, Heterogeneous TSP where the objective is to minimize the maximum cost traveled
by either of the vehicles. To see this, consider the following min-max problem:

Cmax∗
opt = min

x,y,φ,η
max{

∑
e∈E1

xeC
1
e ,
∑
e∈E2

yeC
2
e} (2.16)
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subject to the constraints defined in equations (2.2-2.6f). The above min-max problem
can also be restated as:

Cmax∗
opt = min

t,x,y,φ,η
t (2.17)

t ≥
∑
e∈E1

xeC
1
e ,

t ≥
∑
e∈E2

yeC
2
e , (2.18)

and the constraints in equations (2.2-2.6f). Therefore, a LP relaxation of this min-max
problem will have an objective defined in equation (2.17) subject to constraints in equa-
tions (2.18,2.8-2.12). The approximation algorithm for the min-max problem also follows
the same approach as Algorithm Approx in section 2.4: 1) Solve the LP relaxation of
the min-max problem; 2) Assign any destination i to the first vehicle if φi ≥ ηi and the
remaining destinations to the second vehicle; 3) For each vehicle, use the Christofides
algorithm to obtain a tour to visit its set of destinations. Let Cmax∗

lp be the optimal cost
of the LP relaxation of the min-max problem. Using the same notations and similar
arguments as in the previous section, we have,

max(C(TOUR1), C(TOUR2)) ≤ 3

2
max(C1

hk, C
2
hk),

≤ 3Cmax∗
lp ,

≤ 3Cmax∗
opt .

2.7 Conclusions

In general, the approach given in this work can be extended to obtain a 3m
2

-approximation
algorithm for variants of a m-depot, Heterogeneous Traveling Salesman Problem. When
there are more than 2 vehicles, the vehicle-destination constraints that are present due
to the functional heterogeneity of vehicles can be specified in a couple of different ways.
For example, one can specify that a vehicle must visit a subset of destinations or specify
that a vehicle must not visit a subset of destinations. The 3m

2
-approximation algorithm

that one can obtain by extending the approach in this work to the multiple vehicle case
can handle both these specifications.
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Chapter 3

Approximation Algorithm for a
Routing Problem with Fuel
Constraints

3.1 Introduction

Path planning for small Unmanned Aerial Vehicles (UAVs) is one of the research areas
that has received significant attention in the last decade. Small UAVs have already
been field tested in civilian applications such as wild-fire management (8), weather and
hurricane monitoring (9; 10; 11), and pollutant estimation (12) where the vehicles are
used to collect relevant sensor information and transmit the information to the ground
(control) stations for further processing. Compared to large UAVs, small UAVs are
relatively easier to operate and are significantly cheaper. Small UAVs can fly at low
altitudes and can avoid obstacles or threats at low altitudes more easily. Even in military
applications, small vehicles (13) are used frequently for intelligence gathering and damage
assessment as they are easier to fly and can be hand launched by an individual without
any reliance on a runway or a specific type of terrain.

Even though there are several advantages with using small platforms, they also come
with other resource constraints due to their size and limited payload. As small UAVs typ-
ically have fuel constraints, it may not be possible for an UAV to complete a surveillance
mission before refueling at one of the depots. For example, consider a typical surveillance
mission where a vehicle starts at a depot and is required to visit a set of targets. To
complete this mission, the vehicle might have to start at the depot, visit a subset of tar-
gets and then reach one of the depots for refueling before starting a new path. One can
reasonably assume that once the UAV reaches a depot, it will be refueled to full capacity
before it leaves again for visiting any remaining targets. If the goal is to visit each of
the given targets at least once, then the UAV may have to repeatedly visit some depots
in order to refuel again before visiting all the targets. In this scenario, the following
Fuel Constrained, UAV Routing Problem (FCURP) naturally arises: Given a set
of targets and depots, and an UAV where the vehicle is initially stationed at one of the
depots, find a path for the UAV such that each target is visited at least once, the fuel

21



constraint is never violated along the path for the UAV, and the travel cost for the vehicle
is a minimum. The travel cost is defined as the total fuel consumed by the vehicle as it
traverses its path. We assume here that the fuel required to travel a given path for the
UAV is directly proportional to the length of the path. Please refer to figure 3.1 for an
illustration of this problem.

The main difficulty with the FCURP is purely combinatorial. As long as a path of
minimum length can be efficiently computed from an origin to a destination for the UAV,
the motion constraints of the UAVs do not complicate the problem. To emphasize this
point, let the UAV be modeled as a Dubins’ (14) vehicle. If the optimal heading angle
is specified at each target, the problem of finding the optimal sequence of targets to
be visited reduces to a generalization of the TSP, which is known to be NP-Hard (1).
However, if the optimal sequence were to be given, the optimal heading angles can be
found using Dynamic Programming and can be determined arbitrarily accurately using
efficient algorithms as shown in (15). We only address the combinatorial difficulty in this
problem and assume that the UAV must visit each target at a specified heading angle.
As a result, the travel costs for the UAV may be asymmetric. Asymmetry means that
the cost of traveling the optimal path from target A with heading ψA and arriving at
target B with heading ψB may not equal the length of its optimal path starting at target
B with heading ψB and arriving at target A with heading ψA.

Initial Depot

Target

Depot

Figure 3.1: A possible path for the UAV which visits all the targets while visiting some
depots for refueling. Note that a depot can be visited any number of times for refueling
while some depots may not be visited at all.

The FCURP specifically arises in Intelligence, Surveillance and Reconnaissance (ISR)
missions such as the Cooperative Operations in Urban Terrain (COUNTER) project at
the Air Force Research Laboratory (16; 17). In this project, an UAV or a team of UAVs
with limited payload and fuel constraints are used to gather information about a set of
potential targets. The operator specifies the location of targets through a human-machine
interface, and the central computer associated with this interface is required to develop
a trajectory for each UAV in a few minutes. Here, the computer plans the mission and
the UAVs spend their limited resources in collecting and transmitting the information
about the targets to the ground station. Our goal is to develop fast algorithms so that
the central computer can find good feasible solutions to routing problems such as the
FCURP as quickly as possible. We address this goal through the development of an
approximation algorithm and heuristics in this chapter.

A α-approximation algorithm for an optimization problem is an algorithm that runs
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in polynomial time and finds a feasible solution whose cost is at most α times the optimal
cost for every instance of the problem. This guarantee α is also referred to as the approx-
imation factor of the algorithm. This approximation factor provides a theoretical upper
bound on the quality of the solution produced by the algorithm for any instance of the
problem. These upper bounds are known a-priori, i.e., they are known even before one
implements the approximation algorithm for some specific instances of the problem. For
these reasons, the bound provided by the approximation factor is generally conservative.

Currently, there are no constant factor approximation algorithms for the ATSP even
when the costs satisfy the triangle inequality. The approximation factors of the existing
algorithms for the ATSP either depend on the number of targets (18; 19; 20) or the
input data (18). For example, the well known covering algorithm for the ATSP in (18)
has an approximation factor of log(n) where n is the number of targets. There are also
data dependent algorithms (18) with the approximation factors that depend on maxi,j

cij
cji

where cij denotes the cost of traveling from vertex i to vertex j.
When the travel costs are symmetric and satisfy the triangle inequality, authors in

(21) provide an approximation algorithm for the FCURP. They assume that the minimum
fuel required to travel from any target to its nearest depot is at most equal to La

2
units

where a is a constant in the interval [0, 1) and L is the fuel capacity of the vehicle. This
is a reasonable assumption, as in any case, one cannot have a feasible tour if there is a
target that cannot be visited from any of the depots. Using these assumptions, Khuller
et al. (21) present a 3(1+a)

2(1−a)
-approximation algorithm for the problem. In this chapter, we

extend this result for the asymmetric case.
FCURP is related to a more general search problem with uncertainties (22) where

the fuel constraints are posed as a restriction on the time spent by the vehicle between
any two successive depots on its path. The authors in (22) discretize time and space,
and develop heuristics based on the shortest path algorithms. There are also variants
of the vehicle routing problem that are closely related to the FCURP. For example, in
(23; 24), the authors address a symmetric version of the arc routing problem where there
is a single depot and a set of intermediate facilities, and the vehicle has to cover a subset
of edges along which customers are present. The vehicle is required to collect goods
from the customers as it traverses the given set of edges and unload the goods at the
intermediate facilities. The goal of this problem is to find a tour of minimum length
that starts and ends at the depot such that the vehicle visits the given subset of edges
and the total amount of goods carried by the vehicle never exceeds the capacity of the
vehicle at any location along the tour. One of the key differences between the arc routing
problem and the FCURP is that there is no requirement that any subset of edges must be
visited in the FCURP. There are also similar problems (25; 26) addressed in the literature
where each customer is located at a distinct vertex (instead of being present along the
edges) and the vehicle is required to collect goods from the customers and deliver them
at the intermediate facilities. FCURP is also different from the single depot vehicle
routing problems addressed in (27; 28; 29) where there are additional length, travel-time
or capacity constraints.

In the context of the above results, we first present an algorithm for the FCURP with
an approximation factor of (1+a+2aβ) log(|T |)

(1−a)
where T represents the set of targets, and a
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and β are data dependent constants (section 3.3). We then use the solution produced by
the approximation algorithm as an initial solution and apply construction/improvement
heuristics (section 3.4) to obtain solutions with better quality. Computational results
are then presented in section 3.5 to compare the performance of all the algorithms with
respect to the quality of the solutions produced by the algorithms and their respective
computation times.

3.2 Problem Statement

Let T denote the set of targets and D represent the set of depots. Let s ∈ D be the depot
where the UAV is initially located. The FCURP is formulated on the complete directed
graph G = (V,E) with V = T ∪D. Let fij represent the amount of fuel required by the
vehicle to travel from vertex i ∈ V to vertex j ∈ V . It is assumed that the fuel costs
satisfy the triangle inequality i.e., for all distinct i, j, k ∈ V , fij + fjk ≥ fik.

Let L denote the maximum fuel capacity of the vehicle. For any given target i ∈ T ,
we will assume that there are depots d1 and d2 such that fd1i+fid2 ≤ aL where a is a fixed
constant in the interval [0, 1). This is a reasonable assumption, as in any case, target i
cannot be visited by the vehicle if there are no depots d1 and d2 such that fd1i+fid2 > L.
We will also assume that it is always possible to travel from one depot to any another
depot (either directly or by passing through some intermediate depots) without violating
the fuel constraints. Given two distinct depots d1 and d2, let l′d1,d2 denote the minimum
fuel required to travel from d1 to d2. Then, let β be a constant such that l′d2,d1 ≤ βl′d1,d2
for all distinct d1, d2 ∈ D.

A tour for the vehicle is denoted by a sequence of vertices (s, v1, v2, · · · , vp, s) visited
by the vehicle where vi ∈ V for i = 1, · · · , p. Without loss of generality, we will assume
that there is a target exactly at the location of the initial depot; therefore, a tour visiting
all the targets can be transformed to a tour visiting all the targets and the initial depot
and vice versa.

The objective of the problem is to find a TOUR := (s, v1, v2, · · · , vp, s) such that

• {v1, v2, · · · , vp} ⊇ T ,

• the fuel required to travel any part of the tour (d1, t1, · · · , tk, d2)
⊆ TOUR starting at a depot d1 and ending at the next visit to a depot d2 while
visiting a sequence of targets t1, · · · , tk ∈ T must be at most equal to L, i.e.,
fd1,t1 +

∑k−1
i=1 fti,ti+1

+ ftk,d2 ≤ L, and,

• the travel cost, fs,v1 +
∑p−1

i=1 fvi,vi+1
+ fvp,s, is a minimum.

3.3 Approximation Algorithm

We refer to this approximation algorithm as Approx. There are three main steps in
Approx. The first step of Approx aims to find a path for the vehicle to travel from any
target x ∈ T to any other target y ∈ T such that the path can be a part of a feasible
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x
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L−Cx

Depot
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The shortest path from x to y

L−By

Figure 3.2: The first step of the approximation algorithm: The solid edges represent the
shortest path PATHxy from target x to target y, and the cost of traveling this path is
denoted by lxy.

tour for the FCURP, the path satisfies all the refueling constraints and the travel cost
associated with the path is a minimum. Note that the maximum amount of fuel available
for the vehicle when it reaches target x in any tour is L−mind fdx. Also, in any feasible
tour, there must be at least mind fyd units of fuel left when the vehicle reaches target y so
that the vehicle can continue to visit other vertices along its tour. Define Cx := mind fdx
and Bx := mind fxd for any x ∈ T . The first step of the Approx essentially finds a feasible
path of least cost (also referred as the shortest path) such that the vehicle starts at target
x with at most L−Cx units of fuel and ends at target y with at least By units of fuel. If
there is enough fuel available for the vehicle to travel from x to y (or, if L−Cx−By ≥ fxy),
the vehicle can directly reach y from x while respecting the fuel constraints. In this case,
we say that the vehicle can directly travel from x to y and the shortest path (also referred
to as the direct path) is denoted by PATH(x, y) := (x, y). The cost of traveling this
shortest path is just fxy.

If the vehicle cannot directly travel from x to y (if L − Cx − By < fxy), the vehicle
must visit some of the depots on the way before reaching target y. In this case, we find
a shortest path using an auxiliary directed graph, (V ′, E ′), defined on all the depots and
the targets x, y, i.e., V ′ = D∪{x, y} (illustrated in figure 3.2). An edge is present in this
directed graph only if traveling the edge can satisfy the fuel constraint. For example, as
the vehicle has at most L− Cx units of fuel to start with, the vehicle can reach a depot
d from x only if fxd ≤ L − Cx. Therefore, E ′ contains an edge (x, d) if the constraint
fxd ≤ L − Cx is satisfied. Similarly, the vehicle can travel from a depot d to target y
only if there are at least By units of fuel remaining after the vehicle reaches y. Therefore,
E ′ contains an edge (d, y) if the constraint fdy ≤ L − By is satisfied. In summary, the
following are the edges present in E ′:

E ′ :=


{(x, d) : ∀d ∈ D, fxd ≤ L− Cx},⋃{(d1, d2) : ∀d1, d2 ∈ D, fd1d2 ≤ L},⋃{(d, y) : ∀d ∈ D, fdy ≤ L−By}.

(3.1)

Any path starting at x and ending at y in this auxiliary graph will require the vehicle
to carry at most L−Cx units of fuel at target x, satisfy all the fuel constraints and reach
target y with at least By units of fuel left. Also, we let the cost of traveling any edge
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Indirect path

Direct path

Target

(a) A sample tour covering all the tar-
gets obtained using the covering algo-
rithm with lxy as the cost metric.

Edges in indirect path

Target

Depot

A strand of the tour

(b) The indirect edges in the tour are replaced
with the corresponding shortest paths.

Figure 3.3: An illustration of the second step of the approximation algorithm.

(i, j) ∈ E ′ to be equal to fij (as defined in section 3.2). Now, we use Dijkstra’s algorithm
(30) to find a shortest path to travel from x to y. This shortest path (also referred to
as the indirect path using intermediate depots) can be represented as PATH(x, y) :=
(x, d1, d2, · · · , y).

In the second step (illustrated in figure 3.3) of Approx, we use the shortest path
computed between any two targets to find a tour for the vehicle. To do this, let lxy denote
the cost of the shortest path PATH(x, y) that starts at x and ends at y. The following
covering algorithm (18) is used to obtain a tour which visits each of the targets at least
once. Suppose G′o represent the collection of edges chosen by the covering algorithm.
Initially, G′o is an empty set.

• Let T ′ := T . Find a minimum cost cycle cover, C, for the graph (T ′, E ′T ) with
E ′T := {(x, y) : x, y ∈ T ′} and lxy as the cost metric. A cycle cover for a graph is a
collection of edges such that the indegree and the outdegree of each vertex in the
graph is exactly equal to one. A minimum cost cycle cover is a cycle cover such
that the sum of the cost of the edges in the cycle cover is a minimum. This step
can be solved in at most O(|T ′|3) steps using the Hungarian algorithm (18). Add
all the edges found in C to G′o.

• If the cycle cover consists of at least two cycles, select exactly one vertex from each
cycle and return to step 1 with T ′ containing only the selected vertices. If the cycle
cover C consists of exactly one cycle go to the next step.

• The collection of edges in G′o represents a connected Eulerian graph spanning all
the targets where the indegree and the outdegree of each target is the same. Given
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Depot

(a) An infeasible strand from a tour.

PATH(ntx ,mtx) := Shortest path from ntx to mtx

t1 t2 t3d1 d2

nt1

mt1

nt2

mt2

nt3

mt3

(b) The infeasible strand is modified by
adding refuel trips at all the targets in the
strand.

t1 t2 t3d1 d2

nt2

mt2

nt3

mt3

(c) Removal of the refuel trip at t1 does not
make the strand infeasible. Therefore, the
refuel trip at t1 is permanently removed.

t1 t2 t3d1 d2

nt3

mt3

(d) When the refuel trip at t2 is removed,
the strand becomes infeasible. Hence, the
refuel trip at t2 is mandatory.

t1 t2 t3d1 d2

nt2

mt2

(e) Removal of the refuel trip at t3 does
not make the strand infeasible. Hence, the
refuel trip at t3 is permanently removed.

t1 t2 t3d1 d2

nt2

mt2

(f) The edges incident on the targets are
then shortcut as the fuel costs satisfy the
triangle inequality.

Figure 3.4: The greedy procedure to convert an infeasible strand to a feasible strand.

an Eulerian graph, using Euler’s theorem, one can always find a tour such that each
edge in G′o is visited exactly once. This tour is the output of the covering algorithm.

If there is any edge (x, y) in this tour such that the vehicle cannot directly travel from x
to y, (x, y) is replaced with all the edges present in the shortest path, PATH(x, y), from
x to y. After replacing all the relevant edges with the edges from the shortest paths, one
obtains a Hamiltonian tour, TOUR, which visits each of the targets at least once and
some of the intermediate depots for refueling. This tour may still be infeasible because
there may be a sequence of vertices that starts at a depot and ends at the next depot on
the tour which may not satisfy the fuel constraints. To correct this, we further augment
this tour with more visits to the depots as explained in the next step of the algorithm.

In the last step of Approx (illustrated in figure 3.2), the entire tour, TOUR, obtained
from the second step is decomposed into a series of strands. A strand is a sequence of
adjacent vertices in the tour that starts at a depot, visits a set of targets and ends at
a depot. TOUR must be infeasible if the total fuel required to travel any one of these
strands is greater than the fuel capacity of the vehicle (L). Hence, in this step, all the
infeasible strands are identified, and a greedy algorithm is applied to each infeasible strand
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to transform it to a feasible strand (refer to figure 3.4). We present some definitions before
we outline the greedy algorithm. A depot, mx, is referred as a nearest starting depot for
x if fmxx = mind fdx. Similarly, a depot nx is referred as a nearest terminal depot for x if
fxnx = mind fxd. As in the second step of the algorithm, given any two depots ds, df ∈ D,
one can find a path of least cost that starts from ds, visits some intermediate depots (if
necessary) and ends at df while satisfying all the fuel constraints 1. Let the sequence of
all the depots in this path be denoted by PATH(ds, df ) := (ds, d1, d2, · · · , dk, df ) where
d1, d2, · · · , dk ∈ D are the intermediate depots visited by the vehicle.

The greedy algorithm works as follows (refer to figure 3.4): Consider an infeasible
strand represented as (d1, t1, · · · , tk, d2) where d1 and d2 are the two depots of the strand
and t1, · · · , tk are the targets. For each target t in this infeasible strand, we add a refueling
trip such that

• The vehicle visits a nearest terminal depot nt after leaving t.

• The vehicle uses the sequence of depots specified in PATH(nt,mt) to travel from
nt to mt where mt is the nearest starting depot for t, and finally returns to t after
refueling.

After adding all the refueling trips, the modified strand can be denoted as (d1, t1, PATH(nt1 ,mt1), t1, t2, PATH(nt2 ,mt2),
t2, . . . , PATH(ntk ,mtk), tk, d2). Now, each of the refueling trips is chosen sequentially in
the order they are added and is shortcut if the strand that results after removing the
refueling trip still satisfies the fuel constraint (refer to figure 3.4).

3.3.1 Analysis of the Approximation Algorithm

Lemma 3.3.1 Approx always produces a feasible solution for the FCURP.

Proof Consider the greedy procedure presented in the last step of the Approx which
attempts to convert an infeasible strand (d1, t1, t2, · · · , tk, d2) into a feasible path for the
vehicle. The edges (d1, t1) and (tk, d2) in this strand belong to indirect paths while the
remaining edges belong to direct paths. The vehicle can always travel from d1 to t1 and
still have enough fuel at t1 to reach its nearest terminal depot as edge (d1, t1) was added
according to the fuel constraints in (3.1). Therefore, once the vehicle reaches t1, due to
our assumptions on the fuel costs, there always exists a refueling trip such that the vehicle
starts at t1, visits the depots nt1 , mt1 before returning to t1 with the maximum amount
of fuel possible at t1. As a result, the vehicle must be able to reach t2 with sufficient
amount of fuel remaining to reach the nearest terminal depot nt2 . Again, there exists
a refueling trip such that at the end of this trip, the vehicle can return to t2 with the
maximum amount of fuel possible at t2. The above arguments can be repeatedly used
for each target in the infeasible strand to show that the vehicle must be able to reach
d2 using the modified strand while satisfying the fuel constraints. Therefore, the greedy
procedure can always convert any infeasible strand into a feasible path and hence, the
Approx finds a feasible solution to the FCURP.

1Apply Dijkstra’s algorithm on the graph (D,Ed) where E := {(i, j) : i, j ∈ D, fij ≤ L} and the cost
of traveling from vertex i ∈ D to vertex j ∈ D is cij .
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The cost of the final solution (say TOURf ) obtained by Approx is upper bounded
by the sum of the cost of TOUR and the cost of all the refueling trips. So, in order to
bound the cost of TOURf , we need to bound the cost of TOUR, the number of refueling
trips and the cost of each refueling trip in terms of the optimal cost of the FCURP. In
the following lemma, we first bound the cost of TOUR.

Lemma 3.3.2 Let cost(TOUR) denote the total fuel required to travel all the edges in
TOUR. Then, cost(TOUR) is at most equal to log(|T |)×Copt where Copt is the optimal
cost of the FCURP.

Proof The cost of TOUR is equal to the sum of the cost of all the cycle covers spanning
all the targets with lxy as the cost metric. Now, consider any minimum cost cycle cover C
spanning the targets t1, t2, · · · , tm. Without loss of generality, we also let (t1, t2, · · · , tm)
denote the sequence in which the targets in C are visited in an optimal solution to the
FCURP. The minimum cost, lti,ti+1

, of traveling from target ti to ti+1 (computed in the
first and the second step of Approx) must be at most equal to the cost of traveling from
ti to ti+1 in the optimal solution of the FCURP. Therefore, the minimum cost of a TSP
tour visiting any subset of targets using lxy as the metric must be at most equal to Copt.
Since the problem of computing a minimum cost cycle cover is a relaxation to the TSP,
it follows that the cost of any optimal cycle cover computed in the second step of Approx
must be at most equal to Copt. The number of iterations in the covering algorithm is at
most log(|T |) as the number of selected targets in any two successive iterations of the
covering algorithm reduces by half. Hence, the cost of TOUR which is the same as the
total cost of all the cycle covers is at most equal to log(|T |)× Copt.

In the following lemma, we bound the number of refueling trips needed to make TOUR
feasible.

Lemma 3.3.3 The number of refueling trips needed by the vehicle is upper bounded by
2cost(TOUR)

(1−a)L
.

Proof Let I = (d1, t1, t2, · · · , d2) represent an infeasible strand in TOUR that requires
additional refueling trips and let cost(I) denote the total fuel required to travel the
edges connecting any two adjacent vertices in I. Given any two vertices u, v ∈ I and the
segment Iuv of I starting at u and ending at v, let cost(u, v) denote the total fuel required
to travel the edges connecting any two adjacent vertices in Iuv. Let the greedy procedure
add refueling trips at targets v1, v2, · · · , vk to make I feasible. Then, cost(d1, v2) must be
greater than L − Bv2 (recall that for any target x, Cx := mind fdx and Bx := mind fxd);
if this is not the case, the refueling trip at target v1 is unnecessary and can be removed.
Similarly, cost(v1,v3) must be greater than L−Cv1 −Bv3 , else, the refueling trip at v2 is
avoidable and can be removed. Repeating the above arguments for the pairs of vertices
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(v2, v4), · · · , (vk−2, vk) and (vk−1, d2), we get, the following inequalities:

cost(d1, v2) > L−Bv2 ,

cost(v1, v3) > L− Cv1 −Bv3 ,

cost(v2, v4) > L− Cv2 −Bv4 ,
...

...
...

cost(vk−2, vk) > L− Ck−2 −Bvk ,

cost(vk−1, d2) > L− Ck−1.

Now, the number of refueling trips can be bounded in the following way:

2cost(I) ≥ cost(d1, v2) +
k−2∑
i=1

cost(vi, vi+2) + cost(vk−1, d2)

≥ kL− Cv1 −
∑

x=v2,··· ,vk−1

(Bx + Cx)−Bvk . (3.2)

For any target x, as there are depots d̂ and d such that fd̂x+fxd ≤ aL, we have Cx+Bx =
mind fdx + mind fxd ≤ fd̂x + fxd ≤ aL. Using this bound for each target in (3.2), we get

2cost(I) ≥ kL− aL− (k − 2)aL− aL (3.3)

≥ k(1− a)L. (3.4)

As a result, the number of refueling trips for strand I is upper bounded by 2cost(I)
(1−a)L

.
Therefore, the total number of refueling trips for the infeasible strands is upper bounded
by 2

(1−a)L

∑
I cost(I) ≤ 2

(1−a)L
cost(TOUR).

The following theorem provides an approximation factor for Approx which depends
on the size of the problem and the input data.

Theorem 3.3.1 Approx solves the FCURP with an approximation factor of (1+a+aβ) log(|T |)
1−a L

in O(|D|2|T |2 + |T |3log(|T |)) steps.

Proof The cost of the solution, TOURf , obtained by Approx is upper bounded by the
sum of the cost of TOUR and the cost of all the refueling trips. Note that the cost of the
refueling trip at any target x must be equal to fxd̂1 + fd̂1d̂2 + fd̂2x where the depots d̂1, d̂2

are such that fxd̂1 = mind fxd, fd̂2x = mind fdx. From the assumptions in section 3.2, we
get,

fxd̂1 + fd̂1d̂2 + fd̂2x ≤ fxd̂1 + βfd̂2d̂1 + fd̂2x
≤ fxd̂1 + β(fd̂2x + fxd̂1) + fd̂2x
= (1 + β)(fd̂2x + fxd̂1)

≤ (1 + β)aL.

Using lemma 3.3.3, we can conclude that the total cost of all the refueling trips must be at
most equal to (1 + β)aL× 2cost(TOUR)

(1−a)L
= 2(1+β)a

(1−a)
cost(TOUR). Therefore, the total cost of
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TOURf is upper bounded by cost(TOUR)+2(1+β)a
(1−a)

cost(TOUR) = (1+a+2βa)
(1−a)

cost(TOUR).

Using lemma 3.3.2, we get, cost(TOURf ) ≤ (1+a+2βa)
(1−a)

log(|T |)Copt. Also, the number of
steps involved in the algorithm is dominated by the first and second step of Approx. For
any given pair of targets x and y, the Dijkstra’s algorithm requires at most O(|D|2) steps
to compute lxy. As a result, the total number of steps required to implement the first
step of Approx is O(|D|2|T |2). The second step of Approx runs the Hungarian algorithm
for at most log(|T |) iterations. Hence, the number of steps required to implement the
second step is O(|T |3log(|T |)). Therefore, the total number of steps involved in Approx
is O(|D|2|T |2 + |T |3log(|T |)).

3.4 Construction and Improvement Heuristics

The construction heuristic we propose is exactly the same as Approx except for its second
step. Specifically, we replace the covering algorithm in the second step of Approx with
the Lin-Kernighan-Helgaun (LKH) heuristic (31). We then use the solution obtained
using the construction heuristic as an initial feasible solution for the improvement heuris-
tics. The improvement heuristics relies on a combination of a k−opt heuristic and a depot
exchange heuristic to improve the quality of the tour obtained by the construction heuris-
tic. A k−opt heuristic is a local search method which iteratively attempts to improve
the quality of a solution until some termination criteria are met. The depot exchange
heuristic aims to replace some depots in the tour with refueling depots not present in the
tour in order to obtain better feasible solutions. A flow chart of the overall procedure is

Begin

T = Tour from construction heuristic

Perform k−opt followed by Depot exchange on T

T1 = New tour

Is Cost(T1)≥Cost(T) T = T1

Output T

End

No

Yes

Figure 3.5: Overall procedure in the improvement heuristic.

presented in figure 3.5. In the following subsections, we explain the k−opt and the depot
exchange heuristic in detail.

3.4.1 k−opt

We will first give some basic definitions involved in a k−opt heuristic, and then see how it
is applicable to the FCURP. A tour S2 is defined to be in the k−exchange neighborhood
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(a) Given segment of a tour.

b p q ua v

(b) Edges (a, b), (p, q) and (u, v) are removed.

b p q ua v

(c) One possible way of adding new edges to con-
struct a new segment.

Figure 3.6: Possible 3-exchange move.

Algorithm 1 : Pseudo code for the k−opt algorithm

Notations: Let cost(T) denote the sum of the cost of traveling all
the edges in the tour T. Let n denote the search span of a seg-
ment.

1: T∗ ← Initial feasible tour.
2: T← T∗.
3: loop
4: Nd ← Number of visits to the depots in T.
5: for i = 1, · · · , Nd do
6: S(i, n) ← segment of T centered at the ith depot visited in T.
7: Find a tour R such that for 2 ≤ k′ ≤ k,
8: R is obtained by replacing k′ edges in the segment

S(i, n) with k′ new edges;
9: R is the best improving k′−exchange of T.

10: If cost(R) < cost(T), T← R.
11: end for
12: if cost(T∗) ≤ cost(T) then
13: break;
14: else
15: T∗ ← T.
16: end if
17: end loop
18: Output T∗ as the solution.
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of the tour S1 if S2 can be obtained from S1 by replacing k edges in S1 with k new edges.
A tour S2 is said to be obtained from a feasible tour S1 by an improving k′−exchange if
S2 is in the k′−exchange neighborhood of S1, is feasible and has a travel cost lower than
S1. The k−opt heuristic starts with a feasible tour and iteratively improves on this tour
making successive improving k′−exchanges for any 2 ≤ k′ ≤ k until no such exchanges
can be made.

A critical part of developing a k−opt heuristic deals with choosing an appropriate
k′−exchange neighborhood for a tour. One way to choose this is to consider all possible
subsets of k′ edges in the tour and try an improving k′−exchange. Initial implementations
showed us that substantial improvements in the quality of the tour were obtained when
the k′−exchanges where performed around the refueling depots in the tour. In view of this
observation, we define a segment of span n as a sequence of 2n+1 adjacent vertices of the
tour centered around a depot. A segment can be denoted by (s1, . . . , sn, d, sn+1, . . . , s2n),
where d is the depot around which the segment is centered. Following the definition of
a segment, one can infer that the number of possible segments in a feasible tour is equal
to the number of visits by the UAV to all the depots.

The k′−exchange neighborhood in each iteration is restricted to one of the segments of
the given tour. Given a segment, k′ edges are deleted from the segment, and subsequently
k′ new edges are added to form a new segment as shown in figure 3.6. The updated tour
is then checked for feasibility to ensure that the UAV never runs out of fuel. The pseudo
code for the k−opt heuristic is shown in algorithm 1.

3.4.2 Depot Exchange Heuristic

Given a tour, we consider the depots in the order in which they are visited by the UAV
and substitute each of them with a (possibly) new refueling depot in order to obtain
a better feasible solution. For a given depot d in the tour, suppose v1 and v2 are the
vertices that are visited immediately before and after visiting d in the tour. The heuristic
replaces d with a new depot dr := argmin

u∈D
cv1u + cuv2 if the new tour is feasible and

reduces the total cost. The new tour then acts as the current feasible solution and the
above procedure is repeated for each depot until no further improvements can be done.

3.5 Computational Results

We considered problems of size ranging from 10 targets to 25 targets with increments in
steps of 5. For each problem size, 50 instances were generated and all the targets were
chosen randomly from a square area of 5000×5000 units. In addition, all the instances of
the problem have 5 depots chosen at fixed locations in the square area. All the simulations
were run on a Dell Precision T5500 workstation (Intel Xeon E5630 processor @ 2.53GHz,
12GB RAM).

The simulations were performed for a fixed wing vehicle with minimum turning radius
constraints. A vehicle traveling at a constant speed with a bound on its turning radius is
referred to as the Dubins’ vehicle (14). In the simulations, the minimum turning radius of
the vehicle is chosen to be 100 units and the angle of approach for each target is selected
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uniformly in the interval [0, 2π] radians. Given the approach angles at the targets, the
minimum distance required to travel between any two targets subject to the turning
radius constraints of the vehicle was solved by Dubins in (14). For the simulations, the
maximum fuel capacity L was 4500 units and we assumed that the fuel spent is directly
proportional to the distance traveled by the vehicle.

To find the optimal solution to the FCURP, the formulation presented in the appendix
was solved to optimality using the IBM ILOG CPLEX optimization software (32). The
approximation algorithm and the heuristics were coded using Python 2.7.2 (33). We used
a search span of 4 for the improvement heuristics as it gave a good trade off between the
solution quality and the computation time available. The average time required to find
an optimal solution in CPLEX was nearly 2 hours for problem instances with 25 targets
and 5 depots. On the other hand, the average time required to find a feasible solution
using the approximation algorithm and the heuristics was less than 2 seconds for each
tested instance.

As mentioned in the introduction, the approximation factor of Approx provides an
a-priori, theoretical upper bound on the quality of the solutions obtained by Approx. For
the tested instances, the approximation factor of Approx was 83.18, 87.06, 131.79 and
180.68 for 10, 15, 20 and 25 targets respectively. On the other hand, the worst-case ratio
of the cost of the solution produced by the approximation algorithm to the optimal cost
was 1.52, 1.61, 1.82 and 1.74 for 10, 15, 20 and 25 targets respectively. These results
imply that Approx finds solutions with bounds that are significantly better than the
guarantees indicated by the approximation factor.

In addition to the approximation factors, we also computed the average deviation of
the sub-optimality of the feasible solutions produced by the algorithms using the following
metric: The deviation in the cost of the solution produced by applying an algorithm on an

instance I is defined as 100× Calgorithm
I −Coptimal

I

Coptimal
I

where Calgorithm
I is the cost of the solution

found by the algorithm and Coptimal
I is the cost of the optimal solution for an instance I.

The average deviation of the solutions produced by the approximation algorithm and
the heuristics for the instances is shown in the figure 3.7. From the figure, it is clear that
the average deviation of the solutions produced by the improvement heuristic is much
superior compared to the average deviation of the solutions found by the construction
heuristic or the approximation algorithm. The depot-exchanges played a substantial part
in improving the quality of the solutions found by the improvement heuristics; in partic-
ular, on an average, the depot exchange reduced the deviation by 0.14%, 0.66%, 0.78%
and 1.10% for problems with 10, 15, 20 and 25 targets respectively. The feasible solution
produced by the improvement heuristic was also used as an initial feasible solution for
the formulation in CPLEX. The formulation was then solved in CPLEX with a time
bound of 10 seconds. Using the feasible solution produced by the heuristic as a starting
point, CPLEX was able to further reduce the deviation of the solutions as shown in figure
3.7. Specifically, for instances with 25 targets and 5 depots, CPLEX was further able
to reduce the average deviation to 1.39%. These computational results show that the
proposed algorithms can be effectively used in conjunction with standard optimization
software like CPLEX in order to obtain high quality solutions for the FCURP.
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Figure 3.7: Average deviation of the solutions produced by the proposed algorithms.

3.6 Conclusions

An approximation algorithm and fast heuristics were developed to solve a generaliza-
tion of the single vehicle routing problem with fuel constraints. A mixed-integer, linear
programming formulation was also proposed to find optimal solutions to the problem. Fu-
ture work can be directed towards developing branch and cut methods, and can address
problems with multiple, heterogeneous vehicles.

3.7 Appendix

Let xij denote an integer decision variable which determines the number of directed edges
from vertex i to j in the network; that is, xij is equal to q if and only if the vehicle travels
q times from vertex i to vertex j. As the costs satisfy the triangle inequality, without
loss of generality, we can assume that there is an optimal solution such that each target
is visited exactly once by the vehicle. Therefore, we restrict xij ∈ {0, 1} if either vertex i
or vertex j is a target.

The collection of edges chosen by the formulation must reflect the fact that there
must be a path from the depot to every target. We use flow constraints (34) to formulate
this connectivity constraint. In these flow constraints, the vehicle collects |T | units of a
commodity at the depot and delivers one unit of commodity at each target as it travels
along its path. Enforcing that these commodities can be routed through the chosen edges
ensures there is a path from the depot to every target. Suppose pij denotes the amount
of commodity flowing from vertex i to vertex j. Also, let ri represent the fuel left in the
vehicle when the ith target is visited. The FCURP can be formulated as a mixed integer
linear program as follows:

min
∑

(i,j)∈E

cij xij
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subject to Degree constraints:∑
i∈V \{k}

xik =
∑

i∈V \{k}

xki ∀k ∈ V, (3.5)

∑
i∈V \{k}

xik = 1 ∀k ∈ T, (3.6)

Capacity and flow constraints :∑
i∈V \{s}

(psi − pis) = |T |, (3.7)

∑
j∈V \{i}

(pji − pij) = 1 ∀i ∈ T, (3.8)

∑
j∈V \{i}

(pji − pij) = 0 ∀i ∈ D \ {s}, (3.9)

0 ≤ pij ≤ |T |xij ∀i, j ∈ V, (3.10)

Fuel constraints:

rj − ri + fij ≤M(1− xij) ∀i, j ∈ T, (3.11)

rj − ri + fij ≥ −M(1− xij) ∀i, j ∈ T, (3.12)

rj − L+ fij ≥ −M(1− xij) ∀i ∈ D and j ∈ T, (3.13)

rj − L+ fij ≤M(1− xij) ∀i ∈ D and j ∈ T, (3.14)

ri − fij ≥ −M(1− xij) ∀i ∈ T and j ∈ D, (3.15)

0 ≤ ri ≤ L ∀i ∈ T,
xij ∈{0, 1} ∀ i, j ∈ V, either i or j is a target,

xij ∈{0, 1, 2, · · · , |T |} ∀ i, j ∈ D. (3.16)

Equation (3.5) states that the in-degree and out-degree of each vertex must be the
same, and equation (3.6) ensures that each target is visited once by the vehicle. Note that
these equations allow for the vehicle to visit a depot any number of times for refueling.
The constraints in (3.7)-(3.10) ensure that there are |T | units of commodity shipped
from the depot and the vehicle delivers exactly one of commodity at each target. In
equations, (3.11)-(3.15), M denotes a large constant and can be chosen to be equal to
L + maxi,j∈V fi,j. If the UAV is traveling from target i to target j, equations (3.11) and
(3.12) ensure that the fuel left in the vehicle after reaching target j is rj = ri− fij. If the
UAV is traveling from depot i to target j, equations (3.13), (3.14) ensure that the fuel
left in the vehicle after reaching target j is rj = L− fij. If the UAV is directly traveling
from any target to a depot, constraint (3.15) states that the fuel remaining at the target
must be at least equal to the amount required to reach the depot.
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Chapter 4

Stochastic Dynamic Programming

4.1 Introduction

This chapter is motivated by a robotic perimeter surveillance problem. A collection
of robots assists a remotely located human operator in the task of classification of an
incursion, across the perimeter of a protected zone, as either a nuisance or a threat.
Incursions are stochastic and have both a spatial and temporal component; we assume
that the statistics of the incursion processes are known.

In order to aid the robot-operator team in the timely classification of incursions, the
perimeter is installed with a set of Unattended Ground Sensors (UGSs) at locations where
incursions can occur; these locations will be referred to as stations or UGS stations. At
the stations, UGS flag incursions, raise alerts and communicate them immediately to the
robots. Subsequently, a robot services the alert by visiting the UGS stations where it
was raised, and transmitting images, video, or other sensory information to the operator
using on-board camera and other sensing devices. The operator performs the role of a
classifier based on the information supplied by the robots. The classification accuracy of
the operator depends on the volume and freshness of information supplied by the robots.

For an accurate classification, the robot should provide as much video or other evi-
dence about the incursion to the operator as possible. Subject to certain limits, the longer
a robot spends at an alert location, the robot supplies a higher volume of information
about the alert it services. However, the freshness of information it can gather about
other unserviced alerts suffers. For timely and accurate classification of incursions, the
delay time, defined as the time delay between an alert signal and the time a robot attends
to the alert, should be minimized. Thus, there are two competing needs: a robot needs
to spend more time at an alert location and it also needs to service the alerts as quickly
as possible. A natural question arises: How long should a robot spend time servicing an
alert?

In this chapter, we discretize the problem spatially and temporally and recast the
optimization problem as follows: Should the robot spend the next time interval at the alert
location in terms of maximizing the expected, discounted payoff? The payoff considered
herein is an increasing function of the time spent at the alert site (dwell time) and a
decreasing function of the delay in servicing alerts.
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This problem be naturally posed as a Markov Decision Problem (MDP). However,
the number of states runs into billions even for a modest size problem. For example,
if one considers two robots and eight alert locations, with a maximum allowable delay
time of 30 units, the number of states exceeds 30 billion! Hence, solving Bellman’s
equation to compute the optimal payoff (value function) is computationally intractable.
For this reason, we consider a Linear Programming (LP) based approximate dynamic
programming solution strategy (see (35)). This approach provides an upper bound on
the optimal value function, and an estimate of the quality of the resulting sub-optimal
policy, e. g., see (36; 37).

4.1.1 Relationship to existing Literature

Perimeter surveillance problems arise in a variety of practical applications and have re-
cently received significant attention in the literature; for example, see (38; 39; 40; 41).
The results described in this chapter and our prior work in (42; 43; 44; 45; 46) differ from
the literature in addressing the need to balance the information gained by the robots
with the quality of service requirement of attending to alerts raised at the UGS locations
in a timely manner.

This chapter builds on the conference version of our paper ((47)) and differs from it
in three ways: From an analytical point of view, it provides a performance guarantee of
the sub-optimal policy. From the point of view of application, we consider the case of two
robots in surveillance instead of a single robot. From the organization point of view, we
have tried to provide a distinction between properties that hold for general MDPs and
those that exploit the structure of the robotic surveillance/patrol problem considered in
this chapter.

In terms of our previous work, only one of our papers, (43), deals with multiple (two)
robots; it focuses on the computation of the optimal policy, while the focus of the present
chapter is to develop sub-optimal policies with bounds. The computational complexity
of determining the optimal policy does not scale well with the size of the perimeter patrol
problem and hence, one must consider sub-optimal policies even for problems of modest
size.

The use of LP techniques for solving Dynamic Programming (DP) problems was in-
troduced by (48; 49); the use of aggregation via partitioning and the construction of
sub-optimal policies using approximate value functions was discussed in (50). The LP
based approach to approximate dynamic programming is discussed in (35; 36; 37). The
results in this chapter differ from the existing literature on two counts: (1) the restricted
or constrained LPs that one obtains for this class of applications are computationally
tractable and hence, there is no need for column generation or random sampling tech-
niques as in Trick and Zin (1993), and (2) this work presents a way to construct upper as
well as lower bounds using LPs, a marked departure from prior work in this area, other
than by the authors’ work in (51). Also, the results in this chapter differ from the earlier
work of the authors given in (46); in this work, we provide a performance guarantee on
the sub-optimal policy constructed via the lower bound.

The chapter is organized as follows: In Section 4.2, we present the mathematical
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formulation for the class of problems considered. In Section 4.4, we present the main
results on the upper and lower bounds and the performance guarantees in the form of
theorems. In section 4.5, we present an illustrative example of a perimeter patrol problem
and showcase the results.

4.2 Problem Formulation

We will discretize the problem spatially and temporally; nodes on the perimeter partition
the perimeter uniformly. The distance between adjacent nodes on the perimeter is a unit
of length and the time taken by a robot to traverse between two adjacent nodes is the
unit of time. The UGS locations form a subset of the nodes.

Let xr(t),u(t) denote the states of nr robots in the collection and their control actions
respectively at time t. Let xs(t),d(t) denote the states associated with the ns UGS
locations and the disturbance (incursions) occuring at those locations respectively. One
may associate the states of the robots with their location, direction of travel around
the perimeter, the amount of time they spend (or dwell) servicing an alert at the UGS
location etc. One may think of the states associated with UGS locations to be the delays
incurred in servicing the alerts raised at those locations. The control actions of the robots
at time t are captured by the vector u(t); a sample control action indicates whether a
robot should dwell at its current location or continue in the same direction or reverse.
The disturbance d(t) can take any of the possible L values, namely d1,d2, . . . ,dL with
corresponding probabilities p1, . . . , pL; these probabilities are assumed to be known a
priori. The number of possible values the disturbance d(t) can take depends on the
model of incursion processes; for example, if at most one incursion is allowed at any
time across the ns stations, then L = ns + 1; if, on the other hand, incursions can occur
simultaneously at all the stations, then L = 2ns . The latter model of incursion allows
one to relate this problem of perimeter surveillance to the cyclic poll server model, for
example, see (52); however, their work corresponds to the robot serving alerts in a cyclical
manner without having to take any decisions to stay put at the location or to reverse.

For some suitable vector fields, fr and fs, one may write the equations governing the
evolution of the states xr and xs as:

xr(t+ 1) = fr(xr(t),u(t)), (4.1)

xs(t+ 1) = fs(xr(t),xs(t),u(t),d(t)). (4.2)

For the sake of notational convenience, let the state of the system x(t) := (xr(t),xs(t)).
We may combine the evolution equations (4.1) and (4.2) as:

x(t+ 1) = f(x(t),u(t),d(t)), (4.3)

for some appropriate vector field f .
Additionally, there may be constraints on the state and control input, of the form:

g(x(t),u(t)) ≤ 0, ∀t ≥ 0, (4.4)
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which model the allowable control actions that can be taken by the robots. For example,
the state of the stationary UGS sensors can only be altered by the actions/inputs of a
robot that has spent a pre-specified amount of time in its neighborhood.

Let r(x,u) denote the one-step payoff/ reward associated with the state x and the
control input u. We focus our attention on stationary feedback policies, π ∈ Π := S×U ,
i.e., u = uπ(x). Now consider the stochastic optimization problem: For a specified
discount factor, λ ∈ (0, 1), find a stationary policy, π, such that the following objective
is maximized:

V ∗(x0) := max
π∈Π

E[
∞∑
t=0

λtr(x(t),uπ(x(t)))|x(0) = x0], (4.5)

where Π is the set of all possible stationary policies.
The value function V∗ is a vector with a component V ∗(x0) corresponding to the

initial state x0. It is well-known that V∗ satisfies Bellman’s equation; however, the
computational tractability depends on the dimension of V∗ given by |S|. For a modest
size problem involving 2 robots and 8 stations, the value of |S| can be upwards of 20
billion. For this reason, the conventional techniques of value and policy iterations to
solving Bellman’s equation are unsuitable.

In order to distinguish between properties that are valid for general MDPs and the
MDP for perimeter patrol application, we will let p(s,u, z) represent the probability of
state s transitioning to z under the influence of u for a general MDP; for the current
application, if for some l, we have z = f(s,u,yl), then p(s,u, z) = pl; otherwise, it is
zero.

4.2.1 Structure of the problem used in Approximate Dynamic
Programming

We make the following additional assumptions about the structure of the system:

• Assumption 1: The set of allowed control actions for each robot are identical
and finite, and is represented by Ur. The vector u may be expressed as u =
(u1, u2, . . . , unr) ∈ Unr

r =: U .

• Assumption 2: Since the problem has been discretized, let Sr and Ss represent
sets of all possible discrete states of robots and stations respectively; since the
perimeter is compact and since the disturbances and control decisions are finite, we
will assume that the sets Sr and Ss are also finite. The state space S of the system
is the Cartesian product Sr × Ss and is also finite.

• Assumption 3: In the perimeter surveillance application, we treat the delay in
servicing an alert at a location as the state xs. In this case, the delay increases
monotonically until it is reset by the action of the robots. For a given xr,d,u, the
function fs is monotone in xs, i.e., if xs ≥ zs then fs(xr,xs,u,d) ≥ fs(xr, zs,u,d).
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• Assumption 4: We assume the following structure for the one-step payoff function:

r(x,u) = ψr(xr,u)− ψs(xs), (4.6)

where ψr : Sr×U → <, and ψs : Ss → <+. The function ψr is a monotone function
of xr for every u, while the function ψs is a monotone function of xs.

This structure is motivated by the following consideration: the information gained
by robots depends on how long they dwell at a station, while there is a penalty
associated with tardiness in servicing alerts at other locations.

• Assumption 5: Each robot knows the complete state, xs, of all stations. While
this may not be realistic, we make this assumption in order to avoid complexities
that arise from incomplete information.

The structure of the perimeter patrol problem that we will exploit specifically are:

• Evolution Invariance Property: Assumption 3 suggests the following partial
ordering of states:

x ≥ z ⇐⇒ xr = zr, xs ≥ zs.

Assumption 3 implies that if two initial states, x, z are ordered so that x ≥ z, then
under the influence of the same control input, u and d, their corresponding next
states are also ordered in a similar way, i.e., for the same set of u,d, f(x,u,d) ≥
f(z,u,d). Inductively, their corresponding states maintain the same relationship
as they evolve. In other words, if

– x0 and z0 are two initial states satisfying x0 ≥ z0, and

– if their corresponding states evolve as x(t) and z(t) for t > 0,

then for the same sequence of inputs, u(t) and disturbances, d(t), we have x(t) ≥
z(t).

• Structural Property of Value Function: If x,y ∈ S and x ≥ y, then V ∗(x) ≤
V ∗(y); furthermore, from the Evolution Invariance Property, x(t) ≥ y(t) for all
t ≥ 0. From the definition of partial ordering, the one-step reward at every t corre-
sponding to initial condition x is no more than the one-step reward corresponding
to the initial condition y for the same sequence of control actions u,d; correspond-
ingly the total discounted reward associated with initial condition x is no more
than than the corresponding quantity for initial condition y. Taking expectation
over all disturbances and maximizing over control actions, one gets V ∗(x) ≤ V ∗(y);
from the Evolution Invariance Property, V ∗(f(x,u,d)) ≤ V ∗(f(y,u,d)) for all u,d.
This property implies that the value function, V∗, satisfies linear inequalities de-
scribing the relationship between its components corresponding to states that can
be compared.

• Partitioning Property: Assumptions 3 and 4 suggest the following definition of
a partitioning scheme:
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Definition (Partitioning Scheme): A partitioning scheme P of S and of car-
dinality M is defined to be a collection of M disjoint subsets of S, i.e., P =
{S1,S2, . . . ,SM} and

∪Mk=1Sk = S,
xr = yr, ψs(xs) = ψs(ys), ∀x,y ∈ Sk, k = 1, . . . ,M,

Ux = Uy,∀x,y ∈ Sk, k = 1, . . . ,M.

We will refer to the subsets Sk, k = 1, 2, . . . ,M , as partitions. The one-step reward
is only a function of a few state variables as specified in Assumption 4; in particular,
for every x ∈ Si and for every u, the one-step reward r(x,u) is the same and may
be represented by ri(u) indicating its dependence only the index of the partition
and the control input u.

This problem also allows for the existence of partitions to be partially ordered in a
manner that is consistent with the partial ordering of states. We define Si ≥ Sj if
and only if

1. for every x ∈ Si, there is a z ∈ Sj such that x ≥ z; moreover, there is no
s ∈ Sj such that s ≥ x, and

2. for every z ∈ Sj, there is a x ∈ Si such that x ≥ z; moreover, there is no
s ∈ Si such that z ≥ s.

This problem allows for a partitioning scheme wherein if x ≥ z, then one can find
partitions, Si 3 x, Sj 3 z such that Si ≥ Sj.

We consider a piecewise constant approximation, i.e., the approximate value function is a
constant over all the states in a given partition set. The determination of the approximate
value function then reduces to finding the constants associated with the partition sets.
We use the LP approach of (35) in this pursuit.

4.3 Properties of Generalized Bellman Inequalities

The solution to Bellman’s equation can be expressed as as the following LP following
(48), which we refer to as OLP: Let c ≥ 0 represent the probability distribution of initial
states.

J = min c ·V, (4.7)

V (s) ≥ r(s,u) + λ
∑
z∈S

p(s,u, z)V (z), ∀s ∈ S,u. (4.8)

The constraints (4.8) are referred to as Bellman Inequalities. From (35), any feasible V
to the Bellman Inequalities upper bounds V∗. However, a lower bounding procedure for
V∗ has received scant attention in the literature.

Let P1, . . . ,PR be disjoint subsets of S and let their union be S. These sets may not
be partitions in the sense of the partioning scheme defined in the previous section. Let
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≥ denote the relationship between any two comparable states in the partial ordering;
again, the partial ordering may be general and may not correspond to partial ordering
defined earlier. In this chapter, we are interested in Generalized Bellman Inequalities,
which incorporate the structure of value functions as follows:

1. GBI-1:

V (s) ≥ r(s,u) + λ
∑
z∈S

p(s,u, z)V (z), ∀s ∈ S,u,

V (x) ≥ V (z), ∀z ≥ x. (4.9)

2. GBI-2:

min
x∈Pi

V (x) ≥ min
x∈Pi

[r(x,u) + λ
∑
z∈S

p(x,u, z)V (z)], ∀i,u,

V (x) = V (z), ∀x, z ∈ Pi. (4.10)

Lemma 4.3.1 The following properties hold for GBI-1, and GBI-2:

1. The inequalities are feasible and the feasible solutions are lower bounded.

2. If V1,V2 are two feasible solutions, then the componentwise minimum min{V1,V2}
is also feasible.

3. The componentwise minimum of all feasible solutions, V̄i := min{V : V is feasible for GBI-i},
is well defined and is also feasible. Hence, for every c ≥ 0, and any feasible V for
GBI-i, c ·V ≥ c · V̄i.

Proof: If (1) holds, (2) and (3) readily follow. For i = 1, 2, let Fi denote the feasible
set of GBI-i. Let rmax = maxs,u r(s,u) and r0 := mins,u r(s,u). Let V be a vector with
every component of V being rmax

1−λ ; it can readily be verified that GBI-1 and GBI-2 are
feasible.

Let F̃i correspond to the feasible set of GBI-i when the one step reward r(s,u) is
lowered to r0. It follows that Fi ⊂ F̃i and hence, if the feasible solutions of F̃i are
lower bounded, then (1) is proved. It is easy to see that every component of the feasible
solutions in F̃i are lower bounded by r0

1−λ and hence (1) is proved. �

4.4 Main Results

In this section, we will present three theorems. The first two theorems deal with general
MDPs, while the last theorem exploits the structure of the problem and partitioning
schemes to simplify the computations. Theorem 1 deals with bounding the value function
as given below:

Theorem 4.4.1 For each i = 1, 2, let V̄i be the componentwise minimum of all feasible
solutions of GBI-i. Then,

V̄1 ≥ V∗ ≥ V̄2.
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Proof: Since V̄1 satisfies Bellman Inequalities, V̄1 ≥ V∗ from (35).
If we show that a lower bound, VL of V∗ is feasible for GBI-2, then by part (3)

of Lemma 1, VL ≥ V̄2 as it is the componentwise minimum of all feasible solutions
of GBI-2. It is easy to construct one such VL as follows: for each x ∈ Si, define
VL(x) = mins∈Pi

V ∗(s). Since V∗ satisfies Bellman Inequalities, we have:

min
s∈Pi

V ∗(s) ≥ min
s∈Pi

[r(s,u) + λ
∑
z∈S

p(s,u, z)V ∗(z)],

≥ min
s∈Pi

[r(s,u) + λ
∑
z∈S

p(s,u, z)VL(z)],

⇒ min
s∈Pi

VL(s) ≥ min
s∈Pi

[r(s,u) + λ
∑
z∈S

p(s,u, z)VL(z)].

Furthermore, for every x, s ∈ Pi, by construction, VL(x) = VL(s). Hence, VL is feasible
for GBI-2. Since V∗ ≥ VL, we have V∗ ≥ V̄2 by part (3) of Lemma 1. �

Remark 4 The partial ordering of states in the second inequality constraint of GBI-1
need not correspond to the partial ordering suggested by Assumption 4. If it does, the
componentwise minimum of feasible solutions of GBI-1 will indeed be V∗.

If, in any partition, any two states admit the same set of control actions (as the definition
of partitioning scheme suggests), then one can employ the lower bound V̄2 as an approx-
imate value function in the construction of the following stationary sub-optimal policy:
for every i and for every x ∈ Pi, define

uso(x) = arg maxu min
s∈Pi

[r(s,u) + λ
∑
z∈S

p(s,u, z)V̄2(z)]. (4.11)

In other words, the sub-optimal action is the same for every state in a partition; in such a
case, if there is a simple rule to determine the membership of a state x to a partition Pi,
one can implement the above specified stationary, sub-optimal policy easily by keeping
track of the control action associated with each partition.

Associated with the sub-optimal policy, let Pso, rso,Vso be the respective probability
transition matrix, reward vector and the sub-optimal value function (or simply perfor-
mance function). The entry of Pso in the row corresponding to x and column corre-
sponding to z is given by p(x, uso(x), z); the one-step reward corresponding to state x is
r(x, uso(x)). One may also note that

Vso = rso + λPsoVso.

The following theorem relates the performance Vso of the sub-optimal policy to the
lower bound V̄2 of the value function, V∗:

Theorem 4.4.2
V∗ ≥ Vso ≥ V̄2.

44



Proof: Let c > 0 and consider the problem of minimizing c ·V subject to V satisfying
the constraints of GBI-2. By part (3) of Lemma 1, V̄2 is the optimal solution and by
part (1) of Lemma 1, it is lower bounded.

For every i, there is a uso(i) for which the disjunctive inequality is tight, i.e.,

min
x∈Pi

V̄2(x) = min
x∈Pi

[r(x,uso) + λ
∑
z∈S

p(x,uso, z)V̄2(z)], ∀i,

and

min
x∈Pi

[r(x,uso) + λ
∑
z∈S

p(x,uso, z)V̄2(z)] ≥

min
x∈Pi

[r(x,u) + λ
∑
z∈S

p(x,u, z)V̄2(z)], ∀u;

Otherwise, if no such uso(i) exists, then one may drop all the non-binding constraints
associated with minx∈Pi

V (x) in GBI-2 and yet, the optimal solution will not change.
In such a case, the term minx∈Pi

V (x) will not be lower bounded as there will be no
associated lower bounding constraint and minx∈Pi

V̄2(x) will not be lower bounded; this
is contrary to part (1) of Lemma 1.

Since the optimal solution does not change by dropping all non-binding constraints,
we note that V̄2 will remain optimal for the following Disjunctive LP (DLP):

J = min c ·V,
min
x∈Pi

V (x) ≥ min
x∈Pi

[r(x,uso) + λ
∑
z∈S

p(x,uso(i), z)V (z)], ∀i,

V (x) = V (z), ∀i, x, z ∈ Pi.

One may consider the constraints of the above DLP as a special case of GBI-2 by
restricting the set of control actions at every state. By Lemma 1, V̄2 is the componentwise
minimum of the solutions of this DLP also; hence, it suffices to show that a lower bound
for Vso is feasible for the above DLP. Indeed, we may construct a lower bound, Vlb for
Vso as follows: for each x ∈ Si, define Vlb(x) := mins∈Si Vso(s). Clearly, by construction,
Vso ≥ Vlb. It is sufficient to show that Vlb is feasible to the above DLP.

For all x ∈ Pi, we note that

Vso(x) = r(x,uso(i)) + λ
∑
z∈S

p(x,uso(i), z)Vso(z), ∀i,

⇒ min
x∈Pi

Vlb(x) = min
x∈Pi

Vso(x)

≥ min
x∈Pi

[r(x,uso(i)) + λ
∑
z∈S

p(x,uso(i)Vlb(z)], ∀i.

Since Vlb(x) = Vlb(z) for all x, z ∈ Pi, it follows that Vlb satisfies the constraints of the
DLP. Hence, Vso ≥ Vlb ≥ V̄2. �
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4.4.1 Exploiting the structure of the problem

In order to bound the value function V∗ and guarantee the performance of the suboptimal
policy, one must compute V̄1 and V̄2. In general, it is a difficult proposition. Exploiting
the structure of the problem and partitioning facilitates the computation of upper and
lower bounds. The structure of the problem has thus far not been exploited and the
properties of Theorems 1 and 2 hold for general MDPs. From hereon, we will exploit the
structure of the problem to simplify the computation of upper and lower bounds.

Let S1, . . . ,SM be partitions of S. If, for some integer j ∈ [1,M ], f(x,u,dl) ∈ Sj,
then we will define f̄(x,u,dl) = j.

There are two kinds of partitions that one can encounter in this application depending
on the model of incursions. If one allows for incursions to occur independently across all
the UGS stations, then every partition will have a maximum and minimum element. On
the other hand, if one allows for only one incursion at a time across all the UGS stations,
then every partition will have a few maximal and minimal states. For this reason, we will
deal with these two partitioning schemes; we also observe that in both cases, the one-
step reward obeys the following structure owing to Assumption 4 and the partitioning
property: for every i and for every x ∈ Si, we have r(x,u) = ri(u) for every u.

Theorem 4.4.3 Suppose for every i, let Smin,i, Smax,i be respectively the set of minimal
and maximal elements of Si. Let c be any positive vector. Then,

1. an upper bound V̄ub of V∗ may be computed from the optimal solution, w̄ following
upper bounding LP referred to as UBLP:

Ju = min
M∑
j=1

[
∑
x∈Si

c(x)]w(i),

w(i) ≥ ri(u) + λ
L∑
l=1

plw(f̄(z,u,dl)), ∀i,u, z ∈ Smin,i,

w(j) ≥ w(i), ∀Si ≥ Sj.

and V̄ub(x) = w̄(i) for all x ∈ Si.

2. A lower bound V̄2 of V∗ can be computed from the optimal value, w̄ of the following
lower bounding disjunctive LP referred to as LBDLP:

Jl =
M∑
j=1

[
∑
x∈Si

c(x)]w(i), ,

w(i) ≥ min
z∈Smax,i

[ri(u) + λ

L∑
l=1

plw(f̄(z,u,dl))], ∀i,u,

and V̄2(x) = w̄(i) for every x ∈ Si.
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Note that the UBLP and LBDLP have fewer variables in w(i), i = 1, . . . ,M with
the number of inequality constraints being correspondingly smaller. Hence, these two
programs are more tractable. We now return to the proof of Theorem (4.4.3):
Proof: Using Assumption 2 and the assumption that r(x,u) = ri(u) for every x ∈ Si,
we may express the Bellman Inequalities as:

V (x) ≥ ri(u) + λ

L∑
l=1

plV (f(x,u,dl)), ∀i,u, x ∈ Si. (4.12)

1. Consider the following minimization problem:

Js = min c ·V, (4.13)

V (x) ≥ ri(u) + λ
L∑
l=1

plV (f(x,u,dl)), (4.14)

V (x) ≥ V (z), ∀z ≥ x. (4.15)

Since x ≥ z for some z ∈ Smin,i, if V satisfies the following strengthened version of
Bellman inequality for all x ∈ Si, z ∈ Smin,i,

V (x) ≥ ri(u) + λ
L∑
l=1

plV (f(z,u,dl)),

it would automatically satisfy Bellman’s inequalities:

V (x) ≥ ri(u) + λ
L∑
l=1

plV (f(x,u,dl)), ∀x ∈ Si.

By part (3) of Lemma 1 applied to GBI-1, the optimal solution, V̄, of the following
LP dominates V∗:

J = min c ·V,

V (x) ≥ ri(u) + λ
L∑
l=1

plV (f(z,u,dl)), ∀x ∈ Si, z ∈ Smin,i,

V (z) ≥ V (x), ∀x ≥ z, x, z ∈ S.
This LP and UBLP have the same optimal value and the optimal solution of one
can be used to construct the optimal solution of the other in the following way:

• Since V̄ub(x) = w̄(i) for all x ∈ Si, we can see that V̄ub readily satisfies
Bellman’s inequalities of the above LP. The last set of constraints is met by
virtue of the property of partitioning: if x ≥ z, then there exist partitions
Si 3 x, Sj 3 z such that Si ≥ Sj. Since w̄(j) ≥ w̄(i) for all Si ≥ Sj, it
follows that V̄ub(z) = w̄(j) ≥ w̄(i) = V̄ub(x). Since V̄ is optimal, c · V̄ ≤
c · V̄ub =

∑M
i=1[
∑

x∈Si c(x)]w̄(i). By property (3) of Lemma 1, we additionally

have V̄ub ≥ V̄.
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• By the same token, if we set w(i) = V̄ (x), ∀x ∈ Si, we see that it is feasible
for UBLP. Hence,

∑M
i=1[
∑

x∈Si c(x)]w̄(i) ≤∑M
i=1[
∑

x∈Si c(x)]w(i) = c · V̄.

Since c > 0 and V̄ub ≥ V̄, c · V̄ = c · V̄ub ⇒ V̄ = V̄ub. Since V̄ ≥ V∗, it follows
that V̄ub ≥ V∗.

2. For every x ∈ Si, z ≥ x for some z ∈ Smax,i; it follows by Lemma 3 that V ∗(x) ≥
V ∗(z). Let us define w∗(i) := minx∈Si V

∗(x) = minz∈Smax,i
V ∗(z). Since V∗ satisfies

Bellman inequalities, it follows that

w∗(i) = min
x∈Si

V ∗(x) = min
z∈Smax,i

V ∗(z)

≥ min
z∈Smax,i

[ri(u) + λ
L∑
l=1

plV
∗(f(z,u,dl))], ∀i,u.

Clearly, then (w∗,V∗) satisfy the following constraints of the following DLP:

Jl = min c ·V,

w(i) ≥ min
z∈Smax,i

[ri(u) + λ
L∑
l=1

plw(f̄(z,u,dl))], ∀i,u,

V (x) ≥ w(i), ∀x ∈ Si, ∀i.

The constraints of the above DLP are of the form GBI-2 and the conclusions of
Lemma 1 hold for this reason. Since c > 0, by Lemma 1, the optimal solution
of the above DLP, say (wlb,Vlb) is the componentwise minimum of all its feasible
solutions and hence, V∗ ≥ Vlb. Since c > 0, the last inequality becomes binding
at optimum, and the optimal solution of the above DLP (wlb,Vlb) is feasible for
LBDLP; similarly, the optimal solution (w̄, V̄2) of LBDLP is feasible for the
above DLP. Hence, V̄2 = Vlb ≤ V∗. �

Remark 5

• The partitioning property is required to reduce the number of constraints for com-
puting the upper bound from GBI-1 to UBLP.

• If the model of incursions allows for their independent occurrence at each of the
UGS stations, then the cardinality of the sets Smax,i and Smin,i is 1, thereby reducing
LBDLP to an LP. This model is assumed in the numerical simulations.

• Even if Smax,i were to be of higher cardinality, it is possible that the DLP constraint
may reduce to a linear constraint; for example, z1, z2 ∈ Smax,i are distinct and
f̄(z1,u,dl) = f̄(z2,u,dl) for every l, such a simplification can occur. This situation
corresponds to states in the set Smax,i transitioning to the same set of partitions for
every u and d.
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• The solution of DLP listed can be iteratively found as follows:

– Step 0: Set k = 0 and pick z0
i ∈ Smax,i arbitrarily or by using upper bound in

Step 2 below for w0.

– Step 1: Solve the LP:

Jk =
M∑
j=1

[
∑
x∈Si

c(x)]w(i),

w(i) ≥ ri(u) + λ

L∑
l=1

plw(f̄(zki ,u,dl))], ∀i,u.

– Step 2: If wk is the optimal solution at the kth iteration, one can then compute

zk+1
i = arg minz∈Smax,i

[ri(u) + λ
L∑
l=1

plw
k(f̄(z,u,dl))].

– Step 3: If zk+1
i = zki , stop; else, set k = k + 1 and go to Step 1.

At each iteration, the optimal value of LP drops as the optimal solution for the kth

iteration is feasible for the (k + 1)st iteration, and hence, this algorithm will obtain
the optimal solution of DLP in a finite number of iterations. The solution of LP in
Step 1 is computationally tractable as the number of variables and constraints are
only of the order of the number of partitions. The step 2 hides the complexity - if
Smax,i is of low cardinality, this is computationally tractable. otherwise, it will be
difficult to solve.

• The performance guarantee of a suboptimal policy constructed using V̄2 as in The-
orem 2 still holds.

In the following section, we provide numerical examples that corroborate the main
results.

4.5 Illustrative Example

Consider a perimeter to be monitored with the aid of nr = 2 identical robots. Let N = 8
nodes discretize the perimeter uniformly, with some of the nodes corresponding to the
locations of UGS. Let the set of nodes be labeled as N := {0, 1, . . . , N−1} and let the set
of UGS locations be Ω ⊂ N (Ω = {0, 2, 4, 6}), in this case, the stations are symmetricially
located. Note that |Ω| = ns. If a UGS detects an incursion, an alert is raised at the
location and communicated instantaneously to the robots. Let ai(t) denote the action of
the ith robot at time t, so that the control input u(t) = (a1(t), a2(t), . . . , anr(t)). The set
of allowable actions for the robot are {1, 0,−1} with ai(t) = 0 if it dwells at its current
location and equals 1 or −1 respectively if it moves counterclockwise or clockwise. The
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maximum number of allowable values of u is 3nr . The disturbance input (incursion) at the
jth station be denoted by dj(t) ∈ {0, 1}, with dj(t) = 1 if there is an incursion at time t and
is 0 otherwise. The disturbance input, d(t) is an ns-tuple with its jth component being
dj(t), j ∈ Ω. Let δ(·) denote the Kronecker delta function and δ̄(·) = 1 − δ(·). We will
assume that each station has an independent alert queue so that the maximum number
of allowable values of the disturbance input d(t) is 2ns , and the arrival of incursions at
each queue is a stochastic process. Let the probability of no incursions occurring at a
station in a time unit be pα. Then probability that k stations raise an alert at each time
step is pns−k

α (1 − pα)k. For simplication, if a new alert arises at a station which already
has an alert, then the new alert will be processed with the old alert.

We consider the following additional restriction on the motion of the robots: A robot
can only dwell at a UGS location; hence, the allowable actions at a non-UGS location for
the ith robot is {−1, 1}.

Let li(t), Ti(t) respectively denote the current location of the ith robot and the time
it has spent at its current location. Let ls(t) denote a distance to the nearest station
from the first robot in CCW, and lr(t) be distance from the first robot to the second one
in CCW. The state of the robots is given by xr(t) = (ls(t), lr(t), T1(t), T2(t)). Let τj(t)
denote the time elapsed since an alert, that is yet to be serviced, was raised at the jth

station in CCW. The state xs(t) is the ns-tuple of time delays, with the jth component
being the time delay τj(t).

The governing equations for this example may be expressed as:

ls(t+ 1) = (ls(t) + a1(t)) mod N/ns, (4.16)

lr(t+ 1) = (lr(t) + a2(t)) mod N, (4.17)

Ti(t+ 1) = (Ti(t) + 1)δ(ai(t)), i = 1, 2, (4.18)

τj (t+ 1) = h(τj(t), l1(t), a1(t), l2(t), a2(t), dj(t)),∀j ∈ Ω, (4.19)

where,

h(τj, l1, a1, l2, a2, dj) :=

max

{
(τj + 1)σ (τj(t))

[
1−max

i=1,2
{δ(li − j)δ(ai)}

]
, dj

}
The one step reward function is given by,

r(x,u) =
K∑
k=1

ψr(Tk)− β||xs||∞. (4.20)

The information gain function, ψr(·) as a function monotonically increasing in the
time spent by the robot at an UGS location (for details on the operator modeling - see
(44)). The second term penalizes the tardy response of UAVs.

The other parameters were chosen to be: pa = e−2/60, weighing factor, β = 0.01 and
discount factor, λ = 0.9. The corresponding MDP has 1,395,456 states. To reduce the
size of problem, states with same xr, worst service delay, τ̄(xs(t)) := maxj∈Ω τj(t), and
alert status, A(xs(t)) := (δ̄(τ1(t)), . . . , δ̄(τns(t)), are aggregated in the same partition. In
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Figure 4.1: Value function and bounds (all states)
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Figure 4.2: Value function and bounds (Sampled Partitions): ls = 0, lr = 4, T1 = 0, T2 =
0, A = (0, 1, 1, 1)

this partition, r(x,u) = r(y,u), ∀x,y ∈ Si,∀u, and the number of partitions is 15,546.
Figure 4.1 and 4.2 show the value function and its bounds. The optimal value function,
V∗, is found from the value iteration. An upper bound, Vub, and a lower bound, Vlb, are
solutions to UBLP and the iterative LP from Remark 2. Another value function, Vsub,
represents the suboptimal performance value function which is the actual value function
when the suboptimal policy applied to the original MDP. The boundness of the value
function is shown in Fig. 4.1 that shows the value functions and bounds for all states.
Since there are too many data in one plot, we sampled some states so that it is readable.
We pick states which belong to partitions with ls = 0, lr = 4, T1 = 0, T2 = 0, A =
(0, 1, 1, 1), and all τ̄s. In Fig. 4.2, the dotted lines represent seperation of partitions. In
this data set, only difference between partitions is τ̄ shown in X−axis. As we can see, the
value function and the suboptimal performance value function are bounded by the upper
and lower bounds. We can also see that the suboptimal performance value function is
very close to the value function. In this example, percentage error between upper and
lower bounds is 57.5%, and one between V∗ and Vsub is 4.2%.
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